5,234 research outputs found

    Superconductivity without Fe or Ni in the phosphides BaIr2P2 and BaRh2P2

    Full text link
    Heat capacity, resistivity, and magnetic susceptibility measurements confirm bulk superconductivity in single crystals of BaIr2_2P2_2 (Tc_c=2.1K) and BaRh2_2P2_2 (Tc_c = 1.0 K). These compounds form in the ThCr2_2Si2_2 (122) structure so they are isostructural to both the Ni and Fe pnictides but not isoelectronic to either of them. This illustrates the importance of structure for the occurrence of superconductivity in the 122 pnictides. Additionally, a comparison between these and other ternary phosphide superconductors suggests that the lack of interlayer PPP-P bonding favors superconductivity. These stoichiometric and ambient pressure superconductors offer an ideal playground to investigate the role of structure for the mechanism of superconductivity in the absence of magnetism.Comment: Published in Phys Rev B: Rapid Communication

    Bifunctional earth-abundant phosphate/phosphide catalysts prepared via atomic layer deposition for electrocatalytic water splitting

    Get PDF
    The development of active and stable earth-abundant catalysts for hydrogen and oxygen evolution is one of the requirements for successful production of solar fuels. Atomic Layer Deposition (ALD) is a proven technique for conformal coating of structured (photo)electrode surfaces with such electrocatalyst materials. Here, we show that ALD can be used for the deposition of iron and cobalt phosphate electrocatalysts. A PE-ALD process was developed to obtain cobalt phosphate films without the need for a phosphidation step. The cobalt phosphate material acts as a bifunctional catalyst, able to also perform hydrogen evolution after either a thermal or electrochemical reduction step

    Quantifying the search for solid Li-ion electrolyte materials by anion: a data-driven perspective

    Get PDF
    We compile data and machine learned models of solid Li-ion electrolyte performance to assess the state of materials discovery efforts and build new insights for future efforts. Candidate electrolyte materials must satisfy several requirements, chief among them fast ionic conductivity and robust electrochemical stability. Considering these two requirements, we find new evidence to suggest that optimization of the sulfides for fast ionic conductivity and wide electrochemical stability may be more likely than optimization of the oxides, and that the oft-overlooked chlorides and bromides may be particularly promising families for Li-ion electrolytes. We also find that the nitrides and phosphides appear to be the most promising material families for electrolytes stable against Li-metal anodes. Furthermore, the spread of the existing data in performance space suggests that fast conducting materials that are stable against both Li metal and a >4V cathode are exceedingly rare, and that a multiple-electrolyte architecture is a more likely path to successfully realizing a solid-state Li metal battery by approximately an order of magnitude or more. Our model is validated by its reproduction of well-known trends that have emerged from the limited existing data in recent years, namely that the electronegativity of the lattice anion correlates with ionic conductivity and electrochemical stability. In this work, we leverage the existing data to make solid electrolyte performance trends quantitative for the first time, building a roadmap to complement material discovery efforts around desired material performance.Comment: Main text is 41 pages with 3 figures and 2 tables; attached supplemental information is 8 pages with 3 figure

    Non-saturating large magnetoresistance in semimetals

    Full text link
    The rapidly expanding class of quantum materials known as {\emph{topological semimetals}} (TSM) display unique transport properties, including a striking dependence of resistivity on applied magnetic field, that are of great interest for both scientific and technological reasons. However, experimental signatures that can identify or discern the dominant mechanism and connect to available theories are scarce. Here we present the magnetic susceptibility (χ\chi), the tangent of the Hall angle (tanθH\tan\theta_H) along with magnetoresistance in four different non-magnetic semimetals with high mobilities, NbP, TaP, NbSb2_2 and TaSb2_2, all of which exhibit non-saturating large MR. We find that the distinctly different temperature dependences, χ(T)\chi(T) and the values of tanθH\tan\theta_H in phosphides and antimonates serve as empirical criteria to sort the MR from different origins: NbP and TaP being uncompensated semimetals with linear dispersion, in which the non-saturating magnetoresistance arises due to guiding center motion, while NbSb2_2 and TaSb2_2 being {\it compensated} semimetals, with a magnetoresistance emerging from nearly perfect charge compensation of two quadratic bands. Our results illustrate how a combination of magnetotransport and susceptibility measurements may be used to categorize the increasingly ubiquitous non-saturating large magnetoresistance in TSMs.Comment: Accepted for publication at Proc. Natl. Acad. Sci., minor revisions, 6 figure

    The achievement of low contact resistance to indium phosphide: The roles of Ni, Au, Ge, and combinations thereof

    Get PDF
    We have investigated the electrical and metallurgical behavior of Ni, Au-Ni, and Au-Ge-Ni contacts on n-InP. We have found that very low values of contact resistivity rho(sub c) in the E-7 omega-sq cm range are obtained with Ni-only contacts. We show that the addition of Au to Ni contact metallization effects an additional order of magnitude reduction in rho(sub c). Ultra-low contact resistivities in the E-8 omega-sq cm range are obtained with both the Au-Ni and the Au-Ge-Ni systems, effectively eliminating the need for the presence of Ge in the Au-Ge-Ni system. The formation of various nickel phosphides at the metal-InP interface is shown to be responsible for the observed rho(sub c) values in the Ni and Au-Ni systems. We show, finally, that the order in which the constituents of Au-Ni and Au-Ge-Ni contacts are deposited has a significant bearing on the composition of the reaction products formed at the metal-InP interface and therefore on the contact resistivity at that interface
    corecore