951,721 research outputs found

    An optimization model for metabolic pathways

    Get PDF
    This article is available open access through the publisher’s website through the link below. Copyright @ The Author 2009.Motivation: Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online (http://bioinformatics.oxfordjournals.org/cgi/content/full/btp441/DC1)

    Metabolic network modularity arising from simple growth processes

    Full text link
    Metabolic networks consist of linked functional components, or modules. The mechanism underlying metabolic network modularity is of great interest not only to researchers of basic science but also to those in fields of engineering. Previous studies have suggested a theoretical model, which proposes that a change in the evolutionary goal (system-specific purpose) increases network modularity, and this hypothesis was supported by statistical data analysis. Nevertheless, further investigation has uncovered additional possibilities that might explain the origin of network modularity. In this work, we propose an evolving network model without tuning parameters to describe metabolic networks. We demonstrate, quantitatively, that metabolic network modularity can arise from simple growth processes, independent of the change in the evolutionary goal. Our model is applicable to a wide range of organisms, and appears to suggest that metabolic network modularity can be more simply determined than previously thought. Nonetheless, our proposition does not serve to contradict the previous model; it strives to provide an insight from a different angle in the ongoing efforts to understand metabolic evolution, with the hope of eventually achieving the synthetic engineering of metabolic networks.Comment: 11 pages, 7 figure

    Elasticity sampling links thermodynamics to metabolic control

    Full text link
    Metabolic networks can be turned into kinetic models in a predefined steady state by sampling the reaction elasticities in this state. Elasticities for many reversible rate laws can be computed from the reaction Gibbs free energies, which are determined by the state, and from physically unconstrained saturation values. Starting from a network structure with allosteric regulation and consistent metabolic fluxes and concentrations, one can sample the elasticities, compute the control coefficients, and reconstruct a kinetic model with consistent reversible rate laws. Some of the model variables are manually chosen, fitted to data, or optimised, while the others are computed from them. The resulting model ensemble allows for probabilistic predictions, for instance, about possible dynamic behaviour. By adding more data or tighter constraints, the predictions can be made more precise. Model variants differing in network structure, flux distributions, thermodynamic forces, regulation, or rate laws can be realised by different model ensembles and compared by significance tests. The thermodynamic forces have specific effects on flux control, on the synergisms between enzymes, and on the emergence and propagation of metabolite fluctuations. Large kinetic models could help to simulate global metabolic dynamics and to predict the effects of enzyme inhibition, differential expression, genetic modifications, and their combinations on metabolic fluxes. MATLAB code for elasticity sampling is freely available

    Characterizing steady states of genome-scale metabolic networks in continuous cell cultures

    Full text link
    We present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. More importantly, we derive a number of consequences from the model that are independent of parameter values. First, that the ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties invariant across perfusion systems. This conclusion is robust even in the presence of multi-stability, which is explained in our model by the negative feedback loop on cell growth due to toxic byproduct accumulation. Moreover, a complex landscape of steady states in continuous cell culture emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced. Thus, in order to actually reflect the expected behavior in perfusion, performance benchmarks of cell-lines and culture media should be carried out in a chemostat

    Reconstruction of an in silico metabolic model of _Arabidopsis thaliana_ through database integration

    Get PDF
    The number of genome-scale metabolic models has been rising quickly in recent years, and the scope of their utilization encompasses a broad range of applications from metabolic engineering to biological discovery. However the reconstruction of such models remains an arduous process requiring a high level of human intervention. Their utilization is further hampered by the absence of standardized data and annotation formats and the lack of recognized quality and validation standards.

Plants provide a particularly rich range of perspectives for applications of metabolic modeling. We here report the first effort to the reconstruction of a genome-scale model of the metabolic network of the plant _Arabidopsis thaliana_, including over 2300 reactions and compounds. Our reconstruction was performed using a semi-automatic methodology based on the integration of two public genome-wide databases, significantly accelerating the process. Database entries were compared and integrated with each other, allowing us to resolve discrepancies and enhance the quality of the reconstruction. This process lead to the construction of three models based on different quality and validation standards, providing users with the possibility to choose the standard that is most appropriate for a given application. First, a _core metabolic model_ containing only consistent data provides a high quality model that was shown to be stoichiometrically consistent. Second, an _intermediate metabolic model_ attempts to fill gaps and provides better continuity. Third, a _complete metabolic model_ contains the full set of known metabolic reactions and compounds in _Arabidopsis thaliana_.

We provide an annotated SBML file of our core model to enable the maximum level of compatibility with existing tools and databases. We eventually discuss a series of principles to raise awareness of the need to develop coordinated efforts and common standards for the reconstruction of genome-scale metabolic models, with the aim of enabling their widespread diffusion, frequent update, maximum compatibility and convenience of use by the wider research community and industry
    corecore