43 research outputs found

    Deep recommender engine based on efficient product embeddings neural pipeline

    Full text link
    Predictive analytics systems are currently one of the most important areas of research and development within the Artificial Intelligence domain and particularly in Machine Learning. One of the "holy grails" of predictive analytics is the research and development of the "perfect" recommendation system. In our paper, we propose an advanced pipeline model for the multi-task objective of determining product complementarity, similarity and sales prediction using deep neural models applied to big-data sequential transaction systems. Our highly parallelized hybrid model pipeline consists of both unsupervised and supervised models, used for the objectives of generating semantic product embeddings and predicting sales, respectively. Our experimentation and benchmarking processes have been done using pharma industry retail real-life transactional Big-Data streams.Comment: 2018 17th RoEduNet Conference: Networking in Education and Research (RoEduNet

    Contextual Sequence Modeling for Recommendation with Recurrent Neural Networks

    Full text link
    Recommendations can greatly benefit from good representations of the user state at recommendation time. Recent approaches that leverage Recurrent Neural Networks (RNNs) for session-based recommendations have shown that Deep Learning models can provide useful user representations for recommendation. However, current RNN modeling approaches summarize the user state by only taking into account the sequence of items that the user has interacted with in the past, without taking into account other essential types of context information such as the associated types of user-item interactions, the time gaps between events and the time of day for each interaction. To address this, we propose a new class of Contextual Recurrent Neural Networks for Recommendation (CRNNs) that can take into account the contextual information both in the input and output layers and modifying the behavior of the RNN by combining the context embedding with the item embedding and more explicitly, in the model dynamics, by parametrizing the hidden unit transitions as a function of context information. We compare our CRNNs approach with RNNs and non-sequential baselines and show good improvements on the next event prediction task

    LightSAGE: Graph Neural Networks for Large Scale Item Retrieval in Shopee's Advertisement Recommendation

    Full text link
    Graph Neural Network (GNN) is the trending solution for item retrieval in recommendation problems. Most recent reports, however, focus heavily on new model architectures. This may bring some gaps when applying GNN in the industrial setup, where, besides the model, constructing the graph and handling data sparsity also play critical roles in the overall success of the project. In this work, we report how GNN is applied for large-scale e-commerce item retrieval at Shopee. We introduce our simple yet novel and impactful techniques in graph construction, modeling, and handling data skewness. Specifically, we construct high-quality item graphs by combining strong-signal user behaviors with high-precision collaborative filtering (CF) algorithm. We then develop a new GNN architecture named LightSAGE to produce high-quality items' embeddings for vector search. Finally, we design multiple strategies to handle cold-start and long-tail items, which are critical in an advertisement (ads) system. Our models bring improvement in offline evaluations, online A/B tests, and are deployed to the main traffic of Shopee's Recommendation Advertisement system

    Diversify and Conquer: Bandits and Diversity for an Enhanced E-commerce Homepage Experience

    Full text link
    In the realm of e-commerce, popular platforms utilize widgets to recommend advertisements and products to their users. However, the prevalence of mobile device usage on these platforms introduces a unique challenge due to the limited screen real estate available. Consequently, the positioning of relevant widgets becomes pivotal in capturing and maintaining customer engagement. Given the restricted screen size of mobile devices, widgets placed at the top of the interface are more prominently displayed and thus attract greater user attention. Conversely, widgets positioned further down the page require users to scroll, resulting in reduced visibility and subsequent lower impression rates. Therefore it becomes imperative to place relevant widgets on top. However, selecting relevant widgets to display is a challenging task as the widgets can be heterogeneous, widgets can be introduced or removed at any given time from the platform. In this work, we model the vertical widget reordering as a contextual multi-arm bandit problem with delayed batch feedback. The objective is to rank the vertical widgets in a personalized manner. We present a two-stage ranking framework that combines contextual bandits with a diversity layer to improve the overall ranking. We demonstrate its effectiveness through offline and online A/B results, conducted on proprietary data from Myntra, a major fashion e-commerce platform in India.Comment: Accepted in Proceedings of Fashionxrecys Workshop, 17th ACM Conference on Recommender Systems, 202
    corecore