2 research outputs found

    Meta-Learning with Hessian-Free Approach in Deep Neural Nets Training

    Full text link
    Meta-learning is a promising method to achieve efficient training method towards deep neural net and has been attracting increases interests in recent years. But most of the current methods are still not capable to train complex neuron net model with long-time training process. In this paper, a novel second-order meta-optimizer, named Meta-learning with Hessian-Free(MLHF) approach, is proposed based on the Hessian-Free approach. Two recurrent neural networks are established to generate the damping and the precondition matrix of this Hessian-Free framework. A series of techniques to meta-train the MLHF towards stable and reinforce the meta-training of this optimizer, including the gradient calculation of HH. Numerical experiments on deep convolution neural nets, including CUDA-convnet and ResNet18(v2), with datasets of CIFAR10 and ILSVRC2012, indicate that the MLHF shows good and continuous training performance during the whole long-time training process, i.e., both the rapid-decreasing early stage and the steadily-deceasing later stage, and so is a promising meta-learning framework towards elevating the training efficiency in real-world deep neural nets

    Model-Agnostic Meta-Learning using Runge-Kutta Methods

    Full text link
    Meta-learning has emerged as an important framework for learning new tasks from just a few examples. The success of any meta-learning model depends on (i) its fast adaptation to new tasks, as well as (ii) having a shared representation across similar tasks. Here we extend the model-agnostic meta-learning (MAML) framework introduced by Finn et al. (2017) to achieve improved performance by analyzing the temporal dynamics of the optimization procedure via the Runge-Kutta method. This method enables us to gain fine-grained control over the optimization and helps us achieve both the adaptation and representation goals across tasks. By leveraging this refined control, we demonstrate that there are multiple principled ways to update MAML and show that the classic MAML optimization is simply a special case of second-order Runge-Kutta method that mainly focuses on fast-adaptation. Experiments on benchmark classification, regression and reinforcement learning tasks show that this refined control helps attain improved results
    corecore