3 research outputs found

    Meta-Learning via Feature-Label Memory Network

    Full text link
    Deep learning typically requires training a very capable architecture using large datasets. However, many important learning problems demand an ability to draw valid inferences from small size datasets, and such problems pose a particular challenge for deep learning. In this regard, various researches on "meta-learning" are being actively conducted. Recent work has suggested a Memory Augmented Neural Network (MANN) for meta-learning. MANN is an implementation of a Neural Turing Machine (NTM) with the ability to rapidly assimilate new data in its memory, and use this data to make accurate predictions. In models such as MANN, the input data samples and their appropriate labels from previous step are bound together in the same memory locations. This often leads to memory interference when performing a task as these models have to retrieve a feature of an input from a certain memory location and read only the label information bound to that location. In this paper, we tried to address this issue by presenting a more robust MANN. We revisited the idea of meta-learning and proposed a new memory augmented neural network by explicitly splitting the external memory into feature and label memories. The feature memory is used to store the features of input data samples and the label memory stores their labels. Hence, when predicting the label of a given input, our model uses its feature memory unit as a reference to extract the stored feature of the input, and based on that feature, it retrieves the label information of the input from the label memory unit. In order for the network to function in this framework, a new memory-writingmodule to encode label information into the label memory in accordance with the meta-learning task structure is designed. Here, we demonstrate that our model outperforms MANN by a large margin in supervised one-shot classification tasks using Omniglot and MNIST datasets.Comment: https://github.com/Dawitmu/Meta-Learning-via-Feature-Label-Memory-Networ

    Learning to Compare Relation: Semantic Alignment for Few-Shot Learning

    Full text link
    Few-shot learning is a fundamental and challenging problem since it requires recognizing novel categories from only a few examples. The objects for recognition have multiple variants and can locate anywhere in images. Directly comparing query images with example images can not handle content misalignment. The representation and metric for comparison are critical but challenging to learn due to the scarcity and wide variation of the samples in few-shot learning. In this paper, we present a novel semantic alignment model to compare relations, which is robust to content misalignment. We propose to add two key ingredients to existing few-shot learning frameworks for better feature and metric learning ability. First, we introduce a semantic alignment loss to align the relation statistics of the features from samples that belong to the same category. And second, local and global mutual information maximization is introduced, allowing for representations that contain locally-consistent and intra-class shared information across structural locations in an image. Thirdly, we introduce a principled approach to weigh multiple loss functions by considering the homoscedastic uncertainty of each stream. We conduct extensive experiments on several few-shot learning datasets. Experimental results show that the proposed method is capable of comparing relations with semantic alignment strategies, and achieves state-of-the-art performance

    Small Sample Learning in Big Data Era

    Full text link
    As a promising area in artificial intelligence, a new learning paradigm, called Small Sample Learning (SSL), has been attracting prominent research attention in the recent years. In this paper, we aim to present a survey to comprehensively introduce the current techniques proposed on this topic. Specifically, current SSL techniques can be mainly divided into two categories. The first category of SSL approaches can be called "concept learning", which emphasizes learning new concepts from only few related observations. The purpose is mainly to simulate human learning behaviors like recognition, generation, imagination, synthesis and analysis. The second category is called "experience learning", which usually co-exists with the large sample learning manner of conventional machine learning. This category mainly focuses on learning with insufficient samples, and can also be called small data learning in some literatures. More extensive surveys on both categories of SSL techniques are introduced and some neuroscience evidences are provided to clarify the rationality of the entire SSL regime, and the relationship with human learning process. Some discussions on the main challenges and possible future research directions along this line are also presented.Comment: 76 pages, 15 figures, survey of small sample learnin
    corecore