22,172 research outputs found

    Meta-Learning for Low-Resource Neural Machine Translation

    Full text link
    In this paper, we propose to extend the recently introduced model-agnostic meta-learning algorithm (MAML) for low-resource neural machine translation (NMT). We frame low-resource translation as a meta-learning problem, and we learn to adapt to low-resource languages based on multilingual high-resource language tasks. We use the universal lexical representation~\citep{gu2018universal} to overcome the input-output mismatch across different languages. We evaluate the proposed meta-learning strategy using eighteen European languages (Bg, Cs, Da, De, El, Es, Et, Fr, Hu, It, Lt, Nl, Pl, Pt, Sk, Sl, Sv and Ru) as source tasks and five diverse languages (Ro, Lv, Fi, Tr and Ko) as target tasks. We show that the proposed approach significantly outperforms the multilingual, transfer learning based approach~\citep{zoph2016transfer} and enables us to train a competitive NMT system with only a fraction of training examples. For instance, the proposed approach can achieve as high as 22.04 BLEU on Romanian-English WMT'16 by seeing only 16,000 translated words (~600 parallel sentences).Comment: Accepted as a full paper at EMNLP 201

    Zero-Shot Cross-Lingual Transfer with Meta Learning

    Full text link
    Learning what to share between tasks has been a topic of great importance recently, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning, where, in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.Comment: Accepted as long paper in EMNLP2020 main conferenc

    Learning to Learn to Disambiguate: Meta-Learning for Few-Shot Word Sense Disambiguation

    Get PDF
    The success of deep learning methods hinges on the availability of large training datasets annotated for the task of interest. In contrast to human intelligence, these methods lack versatility and struggle to learn and adapt quickly to new tasks, where labeled data is scarce. Meta-learning aims to solve this problem by training a model on a large number of few-shot tasks, with an objective to learn new tasks quickly from a small number of examples. In this paper, we propose a meta-learning framework for few-shot word sense disambiguation (WSD), where the goal is to learn to disambiguate unseen words from only a few labeled instances. Meta-learning approaches have so far been typically tested in an NN-way, KK-shot classification setting where each task has NN classes with KK examples per class. Owing to its nature, WSD deviates from this controlled setup and requires the models to handle a large number of highly unbalanced classes. We extend several popular meta-learning approaches to this scenario, and analyze their strengths and weaknesses in this new challenging setting.Comment: Added additional experiment
    • …
    corecore