6 research outputs found

    Message Transmission with Reverse Firewalls---Secure Communication on Corrupted Machines

    Get PDF
    Suppose Alice wishes to send a message to Bob privately over an untrusted channel. Cryptographers have developed a whole suite of tools to accomplish this task, with a wide variety of notions of security, setup assumptions, and running times. However, almost all prior work on this topic made a seemingly innocent assumption: that Alice has access to a trusted computer with a proper implementation of the protocol. The Snowden revelations show us that, in fact, powerful adversaries can and will corrupt users\u27 machines in order to compromise their security. And, (presumably) accidental vulnerabilities are regularly found in popular cryptographic software, showing that users cannot even trust implementations that were created honestly. This leads to the following (seemingly absurd) question: ``Can Alice securely send a message to Bob even if she cannot trust her own computer?!\u27\u27 Bellare, Paterson, and Rogaway recently studied this question. They show a strong lower bound that in particular rules out even semantically secure public-key encryption in their model. However, Mironov and Stephens-Davidowitz recently introduced a new framework for solving such problems: reverse firewalls. A secure reverse firewall is a third party that ``sits between Alice and the outside world\u27\u27 and modifies her sent and received messages so that even if the her machine has been corrupted, Alice\u27s security is still guaranteed. We show how to use reverse firewalls to sidestep the impossibility result of Bellare et al., and we achieve strong security guarantees in this extreme setting. Indeed, we find a rich structure of solutions that vary in efficiency, security, and setup assumptions, in close analogy with message transmission in the classical setting. Our strongest and most important result shows a protocol that achieves interactive, concurrent CCA-secure message transmission with a reverse firewall---i.e., CCA-secure message transmission on a possibly compromised machine! Surprisingly, this protocol is quite efficient and simple, requiring only four rounds and a small constant number of public-key operations for each party. It could easily be used in practice. Behind this result is a technical composition theorem that shows how key agreement with a sufficiently secure reverse firewall can be used to construct a message-transmission protocol with its own secure reverse firewall

    Identity-Based Encryption for Fair Anonymity Applications: Defining, Implementing, and Applying Rerandomizable RCCA-secure IBE

    Get PDF
    Our context is anonymous encryption schemes hiding their receiver, but in a setting which allows authorities to reveal the receiver when needed. While anonymous Identity-Based Encryption (IBE) is a natural candidate for such fair anonymity (it gives trusted authority access by design), the de facto security standard (a.k.a. IND-ID-CCA) is incompatible with the ciphertext rerandomizability which is crucial to anonymous communication. Thus, we seek to extend IND-ID-CCA security for IBE to a notion that can be meaningfully relaxed for rerandomizability while it still protects against active adversaries. To the end, inspired by the notion of replayable adaptive chosen-ciphertext attack (RCCA) security (Canetti et al., Crypto\u2703), we formalize a new security notion called Anonymous Identity-Based RCCA (ANON-ID-RCCA) security for rerandomizable IBE and propose the first construction with rigorous security analysis. The core of our scheme is a novel extension of the double-strand paradigm, which was originally proposed by Golle et al. (CT-RSA\u2704) and later extended by Prabhakaran and Rosulek (Crypto\u2707), to the well-known Gentry-IBE (Eurocrypt\u2706). Notably, our scheme is the first IBE that simultaneously satisfies adaptive security, rerandomizability, and recipient-anonymity to date. As the application of our new notion, we design a new universal mixnet in the identity-based setting that does not require public key distribution (with fair anonymity). More generally, our new notion is also applicable to most existing rerandomizable RCCA-secure applications to eliminate the need for public key distribution infrastructure while allowing fairness

    Cliptography: Clipping the Power of Kleptographic Attacks

    Get PDF
    Kleptography, introduced 20 years ago by Young and Yung [Crypto ’96], considers the (in)security of malicious implementations (or instantiations) of standard cryptographic prim- itives that embed a “backdoor” into the system. Remarkably, crippling subliminal attacks are possible even if the subverted cryptosystem produces output indistinguishable from a truly secure “reference implementation.” Bellare, Paterson, and Rogaway [Crypto ’14] recently initiated a formal study of such attacks on symmetric key encryption algorithms, demonstrating a kleptographic attack can be mounted in broad generality against randomized components of cryptographic systems. We enlarge the scope of current work on the problem by permitting adversarial subversion of (randomized) key generation; in particular, we initiate the study of cryptography in the complete subversion model, where all relevant cryptographic primitives are subject to kleptographic attacks. We construct secure one-way permutations and trapdoor one-way permutations in this “complete subversion” model, describing a general, rigorous immunization strategy to clip the power of kleptographic subversions. Our strategy can be viewed as a formal treatment of the folklore “nothing up my sleeve” wisdom in cryptographic practice. We also describe a related “split program” model that can directly inform practical deployment. We additionally apply our general immunization strategy to directly yield a backdoor-free PRG. This notably amplifies previous results of Dodis, Ganesh, Golovnev, Juels, and Ristenpart [Eurocrypt ’15], which require an honestly generated random key. We then examine two standard applications of (trapdoor) one-way permutations in this complete subversion model and construct “higher level” primitives via black-box reductions. We showcase a digital signature scheme that preserves existential unforgeability when all algorithms (including key generation, which was not considered to be under attack before) are subject to kleptographic attacks. Additionally, we demonstrate that the classic Blum– Micali pseudorandom generator (PRG), using an “immunized” one-way permutation, yields a backdoor-free PRG. Alongside development of these secure primitives, we set down a hierarchy of kleptographic attack models which we use to organize past results and our new contributions; this taxonomy may be valuable for future work

    Subvert KEM to Break DEM: Practical Algorithm-Substitution Attacks on Public-Key Encryption

    Get PDF
    Motivated by the currently widespread concern about mass surveillance of encrypted communications, Bellare \emph{et al.} introduced at CRYPTO 2014 the notion of Algorithm-Substitution Attack (ASA) where the legitimate encryption algorithm is replaced by a subverted one that aims to undetectably exfiltrate the secret key via ciphertexts. Practically implementable ASAs on various cryptographic primitives (Bellare \emph{et al.}, CRYPTO\u2714 \& ACM CCS\u2715; Ateniese \emph{et al.}, ACM CCS\u2715; Berndt and Liśkiewicz, ACM CCS\u2717) have been constructed and analyzed, leaking the secret key successfully. Nevertheless, in spite of much progress, the practical impact of ASAs (formulated originally for symmetric key cryptography) on public-key (PKE) encryption operations remains unclear, primarily since the encryption operation of PKE does not involve the secret key, and also previously known ASAs become relatively inefficient for leaking the plaintext due to the logarithmic upper bound of exfiltration rate (Berndt and Liśkiewicz, ACM CCS\u2717). In this work, we formulate a practical ASA on PKE encryption algorithm which, perhaps surprisingly, turns out to be much more efficient and robust than existing ones, showing that ASAs on PKE schemes are far more effective and dangerous than previously believed. We mainly target PKE of hybrid encryption which is the most prevalent way to employ PKE in the literature and in practice. The main strategy of our ASA is to subvert the underlying key encapsulation mechanism (KEM) so that the session key encapsulated could be efficiently extracted, which, in turn, breaks the data encapsulation mechanism (DEM) enabling us to learn the plaintext itself. Concretely, our non-black-box yet quite general attack enables recovering the plaintext from only two successive ciphertexts and minimally depends on a short state of previous internal randomness. A widely used class of KEMs is shown to be subvertible by our powerful attack. Our attack relies on a novel identification and formalization of certain properties that yield practical ASAs on KEMs. More broadly, it points at and may shed some light on exploring structural weaknesses of other ``composed cryptographic primitives,\u27\u27 which may make them susceptible to more dangerous ASAs with effectiveness that surpasses the known logarithmic upper bound (i.e., reviewing composition as an attack enabler)

    Steganography-Free Zero-Knowledge

    Get PDF
    We revisit the well-studied problem of preventing steganographic communication in multi-party communications. While this is known to be a provably impossible task, we propose a new model that allows circumventing this impossibility. In our model, the parties first publish a single message during an honest non-interactive pre-processing phase and then later interact in an execution phase. We show that in this model, it is indeed possible to prevent any steganographic communication in zero-knowledge protocols. Our solutions rely on standard cryptographic assumptions
    corecore