8,890 research outputs found

    GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based Histogram Intersection

    Full text link
    Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning. In this paper, we propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features. To this end, we extract the distribution of features in the egonet for each local neighbourhood and compare them against a set of learned label distributions by taking the histogram intersection kernel. The similarity information is then propagated to other nodes in the network, effectively creating a message passing-like mechanism where the message is determined by the ensemble of the features. We perform an ablation study to evaluate the network's performance under different choices of its hyper-parameters. Finally, we test our model on standard graph classification and regression benchmarks, and we find that it outperforms widely used alternative approaches, including both graph kernels and graph neural networks

    On the power of message passing for learning on graph-structured data

    Get PDF
    This thesis proposes novel approaches for machine learning on irregularly structured input data such as graphs, point clouds and manifolds. Specifically, we are breaking up with the regularity restriction of conventional deep learning techniques, and propose solutions in designing, implementing and scaling up deep end-to-end representation learning on graph-structured data, known as Graph Neural Networks (GNNs). GNNs capture local graph structure and feature information by following a neural message passing scheme, in which node representations are recursively updated in a trainable and purely local fashion. In this thesis, we demonstrate the generality of message passing through a unified framework suitable for a wide range of operators and learning tasks. Specifically, we analyze the limitations and inherent weaknesses of GNNs and propose efficient solutions to overcome them, both theoretically and in practice, e.g., by conditioning messages via continuous B-spline kernels, by utilizing hierarchical message passing, or by leveraging positional encodings. In addition, we ensure that our proposed methods scale naturally to large input domains. In particular, we propose novel methods to fully eliminate the exponentially increasing dependency of nodes over layers inherent to message passing GNNs. Lastly, we introduce PyTorch Geometric, a deep learning library for implementing and working with graph-based neural network building blocks, built upon PyTorch

    Dynamic Graph Message Passing Networks

    Full text link
    Modelling long-range dependencies is critical for complex scene understanding tasks such as semantic segmentation and object detection. Although CNNs have excelled in many computer vision tasks, they are still limited in capturing long-range structured relationships as they typically consist of layers of local kernels. A fully-connected graph is beneficial for such modelling, however, its computational overhead is prohibitive. We propose a dynamic graph message passing network, based on the message passing neural network framework, that significantly reduces the computational complexity compared to related works modelling a fully-connected graph. This is achieved by adaptively sampling nodes in the graph, conditioned on the input, for message passing. Based on the sampled nodes, we then dynamically predict node-dependent filter weights and the affinity matrix for propagating information between them. Using this model, we show significant improvements with respect to strong, state-of-the-art baselines on three different tasks and backbone architectures. Our approach also outperforms fully-connected graphs while using substantially fewer floating point operations and parameters.Comment: CVPR 2020 Ora

    Dynamic Graph Message Passing Networks for Visual Recognition

    Full text link
    Modelling long-range dependencies is critical for scene understanding tasks in computer vision. Although convolution neural networks (CNNs) have excelled in many vision tasks, they are still limited in capturing long-range structured relationships as they typically consist of layers of local kernels. A fully-connected graph, such as the self-attention operation in Transformers, is beneficial for such modelling, however, its computational overhead is prohibitive. In this paper, we propose a dynamic graph message passing network, that significantly reduces the computational complexity compared to related works modelling a fully-connected graph. This is achieved by adaptively sampling nodes in the graph, conditioned on the input, for message passing. Based on the sampled nodes, we dynamically predict node-dependent filter weights and the affinity matrix for propagating information between them. This formulation allows us to design a self-attention module, and more importantly a new Transformer-based backbone network, that we use for both image classification pretraining, and for addressing various downstream tasks (object detection, instance and semantic segmentation). Using this model, we show significant improvements with respect to strong, state-of-the-art baselines on four different tasks. Our approach also outperforms fully-connected graphs while using substantially fewer floating-point operations and parameters. Code and models will be made publicly available at https://github.com/fudan-zvg/DGMN2Comment: PAMI extension of CVPR 2020 oral work arXiv:1908.0695
    • …
    corecore