261 research outputs found

    Rheological instability in a simple shear thickening model

    Full text link
    We study the strain response to steady imposed stress in a spatially homogeneous, scalar model for shear thickening, in which the local rate of yielding \Gamma(l) of mesoscopic `elastic elements' is not monotonic in the local strain l. Despite this, the macroscopic, steady-state flow curve (stress vs. strain rate) is monotonic. However, for a broad class of \Gamma(l), the response to steady stress is not in fact steady flow, but spontaneous oscillation. We discuss this finding in relation to other theoretical and experimental flow instabilities. Within the parameter ranges we studied, the model does not exhibit rheo-chaos.Comment: 8 pages, 3 figs. Minor corrections made. To appear in Euro. Phys. Let

    Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction

    Full text link
    The Gaussian Approximation, proposed originally by Ottinger [J. Chem. Phys., 90 (1) : 463-473, 1989] to account for the influence of fluctuations in hydrodynamic interactions in Rouse chains, is adapted here to derive a new mean-field approximation for the FENE spring force. This "FENE-PG" force law approximately accounts for spring-force fluctuations, which are neglected in the widely used FENE-P approximation. The Gaussian Approximation for hydrodynamic interactions is combined with the FENE-P and FENE-PG spring force approximations to obtain approximate models for finitely-extensible bead-spring chains with hydrodynamic interactions. The closed set of ODE's governing the evolution of the second-moments of the configurational probability distribution in the approximate models are used to generate predictions of rheological properties in steady and unsteady shear and uniaxial extensional flows, which are found to be in good agreement with the exact results obtained with Brownian dynamics simulations. In particular, predictions of coil-stretch hysteresis are in quantitative agreement with simulations' results. Additional simplifying diagonalization-of-normal-modes assumptions are found to lead to considerable savings in computation time, without significant loss in accuracy.Comment: 26 pages, 17 figures, 2 tables, 75 numbered equations, 1 appendix with 10 numbered equations Submitted to J. Chem. Phys. on 6 February 200

    Advancements in blood rheology and hemodynamics simulation with a brief history

    Get PDF
    Blood rheology is a complex field of study that investigates blood flow behavior, vital for understanding its role in physiological and pathological conditions. This article delves into various rheological models that describe blood behavior, ranging from Generalized Newtonian models to more sophisticated thixotropic and elastoviscoplastic models. One such model, the Horner-Armstrong-Wagner-Beris (HAWB) model, offers valuable insights into the dynamic interplay of reversible and irreversible phenomena in blood flow. Recent advancements, such as the mHAWB framework, provide enhanced accuracy and versatility in modeling blood rheology, holding great potential for diagnostic and therapeutic applications. Moreover, microscopic and mesoscopic simulations have paved the way for deeper insights into blood behavior, bridging the gap between theory and experiment. Multiscale models offer a promising approach to capturing the complexities of blood rheology at various length scales. Finally, we explore the clinical implications of blood rheology, including its significance in conditions like polycythemia, neonatal respiratory distress, and circulatory inadequacy. By understanding blood rheology comprehensively, we can advance our knowledge of complex blood flow dynamics and its potential applications in healthcare

    Rheological Signatures in Limit Cycle Behaviour of Dilute, Active, Polar Liquid Crystalline Polymers in Steady Shear

    Get PDF
    We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207-5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest et al. mentioned above compel two studies in the dilute regime that complement recent work of Saintillan & Shelley (Saintillan & Shelley 2013 C. R. Physique 14, 497-517 (doi: 10.1016/j.crhy.2013.04.001)): linearized stability analysis of the isotropic state for nanorod pushers and pullers; and an analytical-numerical study of weakly and strongly sheared active polar nanorod suspensions to capture how particle-scale activation affects shear rheology. We find that weakly sheared dilute puller versus pusher suspensions exhibit steady versus unsteady responses, shear thickening versus thinning and positive versus negative first normal stress differences. These results further establish how sheared dilute nanorod pusher suspensions exhibit many of the characteristic features of sheared semi-dilute passive nanorod suspensions

    A multi-scale method for complex flows of non-Newtonian fluids

    Full text link
    We introduce a new heterogeneous multi-scale method for the simulation of flows of non-Newtonian fluids in general geometries and present its application to paradigmatic two-dimensional flows of polymeric fluids. Our method combines micro-scale data from non-equilibrium molecular dynamics (NEMD) with macro-scale continuum equations to achieve a data-driven prediction of complex flows. At the continuum level, the method is model-free, since the Cauchy stress tensor is determined locally in space and time from NEMD data. The modelling effort is thus limited to the identification of suitable interaction potentials at the micro-scale. Compared to previous proposals, our approach takes into account the fact that the material response can depend strongly on the local flow type and we show that this is a necessary feature to correctly capture the macroscopic dynamics. In particular, we highlight the importance of extensional rheology in simulating generic flows of polymeric fluids.Comment: 18 pages, 9 figure
    • …
    corecore