4 research outputs found

    Immersive design engineering

    Get PDF
    Design Engineering is an innovative field that usually combines a number of disciplines, such as material science, mechanics, electronics, and/or biochemistry, etc. New immersive technologies, such as Virtual Reality (VR) and Augmented Reality (AR), are currently in the process of being widely adapted in various engineering fields. It is a proven fact that the modeling of spatial structures is supported by immersive exploration. But the field of Design Engineering reaches beyond standard engineering tasks. With this review paper we want to achieve the following: define the term “Immersive Design Engineering”, discuss a number of recent immersive technologies in this context, and provide an inspiring overview of work that belongs to, or is related to the field of Immersive Design Engineering. Finally, the paper concludes with definitions of research questions as well as a number of suggestions for future developments

    Mesoscopic Rigid Body Modelling of the Extracellular Matrix Self-Assembly

    No full text
    International audienc

    Mesoscopic Rigid Body Modelling of the Extracellular Matrix Self-Assembly

    No full text
    The extracellular matrix (ECM) plays an important role in supporting tissues and organs. It even has a functional role in morphogenesis and differentiation by acting as a source of active molecules (matrikines). Many diseases are linked to dysfunction of ECM components and fragments or changes in their structures. As such it is a prime target for drugs. Because of technological limitations for observations at mesoscopic scales, the precise structural organisation of the ECM is not well-known, with sparse or fuzzy experimental observables. Based on the Unity3D game and physics engines, along with rigid body dynamics, we propose a virtual sandbox to model large biological molecules as dynamic chains of rigid bodies interacting together to gain insight into ECM components behaviour in the mesoscopic range. We have preliminary results showing how parameters such as fibre flexibility or the nature and number of interactions between molecules can induce different structures in the basement membrane. Using the Unity3D game engine and virtual reality headset coupled with haptic controllers, we immerse the user inside the corresponding simulation. Untrained users are able to navigate a complex virtual sandbox crowded with large biomolecules models in a matter of seconds

    Mesoscopic Rigid Body Modelling of the Extracellular Matrix Self-Assembly

    No full text
    corecore