24,616 research outputs found
Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage
The appearance of the embryonic shield, a slight thickening at the leading edge of the blastoderm during the formation of the germ ring, is one of the first signs of dorsoventral polarity in the zebrafish embryo. It has been proposed that the shield plays a role in fish embryo patterning similar to that attributed to the amphibian dorsal lip. In a recent study, we fate mapped many of the cells in the region of the forming embryonic shield, and found that neural and mesodermal progenitors are intermingled (Shih, J. and Fraser, S.E. (1995) Development 121, 2755–2765), in contrast to the coherent region of mesodermal progenitors found at the amphibian dorsal lip. Here, we examine the fate and the inductive potential of the embryonic shield to determine if the intermingling reflects a different mode of embryonic patterning than that found in amphibians. Using the microsurgical techniques commonly used in amphibian and avian experimental embryology, we either grafted or deleted the region of the embryonic shield. Homotopic grafting experiments confirmed the fates of cells within the embryonic shield region, showing descendants in the hatching gland, head mesoderm, notochord, somitic mesoderm, endoderm and ventral aspect of the neuraxis. Heterotopic grafting experiments demonstrated that the embryonic shield can organize a second embryonic axis; however, contrary to our expectations based on amphibian research, the graft contributes extensively to the ectopic neuraxis. Microsurgical deletion of the embryonic shield region at the onset of germ ring formation has little effect on neural development: embryos with a well-formed and well-patterned neuraxis develop in the complete absence of notochord cells. While these results show that the embryonic shield is sufficient for ectopic axis formation, they also raise questions concerning the necessity of the shield region for neural induction and embryonic patterning after the formation of the germ ring
The epithelium of the dorsal marginal zone of Xenopus has organizer properties
We have investigated the properties of the epithelial layer of the dorsal marginal zone (DMZ) of the Xenopus laevis early gastrula and found that it has inductive properties similar to those of the entire Spemann organizer. When grafts of the epithelial layer of the DMZ of early gastrulae labelled with fluorescein dextran were transplanted to the ventral sides of unlabelled host embryos, they induced secondary axes composed of notochord, somites and posterior neural tube. The organizer epithelium rescued embryos ventralized by UV irradiation, inducing notochord, somites and posterior neural tube in these embryos, while over 90% of ventralized controls showed no such structures. Combinations of organizer epithelium and ventral marginal zone (VMZ) in explants of the early gastrula resulted in convergence, extension and differentiation of dorsal mesodermal tissues, whereas similar recombinants of nonorganizer epithelium and the VMZ did none of these things. In all cases, the axial structures forming in response to epithelial grafts were composed of labelled graft and unlabelled host cells, indicating an induction by the organizer epithelium of dorsal, axial morphogenesis and tissue differentiation among mesodermal cells that otherwise showed non-axial development. Serial sectioning and scanning electron microscopy of control grafts shows that the epithelial organizer effect occurs in the absence of contaminating deep cells adhering to the epithelial grafts. However, labelled organizer epithelium grafted to the superficial cell layer contributed cells to deep mesodermal tissues, and organizer epithelium developed into mesodermal tissues when deliberately grafted into the deep region. This shows that these prospective endodermal epithelial cells are able to contribute to mesodermal, mesenchymal tissues when they move or are moved into the deep environment. These results suggest that in normal development, the endodermal epithelium may influence some aspects of the cell motility underlying the mediolateral intercalation (see Shih, J. and Keller, R. (1992) Development 116, 901–914), as well as the tissue differentiation of mesodermal cells. These results have implications for the analysis of mesoderm induction and for analysis of variations in the differentiation and morphogenetic function of the marginal zone in different species of amphibians
Current perspectives of the signaling pathways directing neural crest induction.
The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse
The early stages of heart development: insights from chicken embryos
The heart is the first functioning organ in the developing embryo and the detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to human. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulations and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic or biochemical approaches, is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analyses of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mouse and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding of early heart development using the chicken model
Polydactylous limbs in Strong's Luxoid mice result from ectopic polarizing activity
Strong's Luxoid (1st^D) is a semidominant mouse mutation in which heterozygotes show preaxial hindlimb polydactyly, and homozygotes show fore- and hindlimb polydactyly. The digit patterns of these polydactylous limbs resemble those caused by polarizing grafts, since additional digits with posterior character are present at the anterior side of the limb. Such observations suggest that 1st^D limb buds might contain a genetically determined ectopic region of polarizing activity. Accordingly, we show that mutant embryos ectopically express the pattern-determining genes fibroblast growth factor 4 (fgf-4), sonic hedgehog (shh), and Hoxd-12 in the anterior region of the limb. Further, we show that anterior mesoderm from mutant limbs exhibits polarizing activity when grafted into host chicken limbs. In contrast to an experimentally derived polydactylous transgenic mouse, forelimbs of homozygotes show a normal pattern of Hoxb-8 expression, indicating that the duplication of polarizing tissue here occurs downstream or independently of Hoxb-8. We suggest that the 1st gene product is involved in anteroposterior axis formation during normal limb development
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis.
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers
- …
