10,507 research outputs found

    The collocation and meshless methods for differential equations in R(2)

    Full text link
    In recent years, meshless methods have become popular ones to solve differential equations. In this thesis, we aim at solving differential equations by using Radial Basis Functions, collocation methods and fundamental solutions (MFS). These methods are meshless, easy to understand, and even easier to implement

    Nodal integration of meshless methods

    Get PDF
    Meshless methods offer interesting properties for the simulation of bulk forming\ud processes. This research concerns the investigation of the stabilized conforming nodal integration scheme (SCNI) for use in metal-forming processes. Two tests are carried out. Firstly, the performance of SCNI is compared to a standard integration scheme. The performance seems problem specific. Secondly the footing of a piece of nearly incompressible material is used for testing the locking behavior of the method. No volumetric locking was found

    Application of Meshless Methods for Thermal Analysis

    Full text link
    Many numerical and analytical schemes exist for solving heat transfer problems. The meshless method is a particularly attractive method that is receiving attention in the engineering and scientific modeling communities. The meshless method is simple, accurate, and requires no polygonalisation. In this study, we focus on the application of meshless methods using radial basis functions (RBFs) — which are simple to implement — for thermal problems. Radial basis functions are the natural generalization of univariate polynomial splines to a multivariate setting that work for arbitrary geometry with high dimensions. RBF functions depend only on the distance from some center point. Using distance functions, RBFs can be easily implemented to model heat transfer in arbitrary dimension or symmetry

    An advanced meshless method for time fractional diffusion equation

    Get PDF
    Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations

    Trefftz Difference Schemes on Irregular Stencils

    Full text link
    The recently developed Flexible Local Approximation MEthod (FLAME) produces accurate difference schemes by replacing the usual Taylor expansion with Trefftz functions -- local solutions of the underlying differential equation. This paper advances and casts in a general form a significant modification of FLAME proposed recently by Pinheiro & Webb: a least-squares fit instead of the exact match of the approximate solution at the stencil nodes. As a consequence of that, FLAME schemes can now be generated on irregular stencils with the number of nodes substantially greater than the number of approximating functions. The accuracy of the method is preserved but its robustness is improved. For demonstration, the paper presents a number of numerical examples in 2D and 3D: electrostatic (magnetostatic) particle interactions, scattering of electromagnetic (acoustic) waves, and wave propagation in a photonic crystal. The examples explore the role of the grid and stencil size, of the number of approximating functions, and of the irregularity of the stencils.Comment: 28 pages, 12 figures; to be published in J Comp Phy

    Modeling elastic wave propagation in fluid-filled boreholes drilled in nonhomogeneous media: BEM – MLPG versus BEM-FEM coupling

    Get PDF
    The efficiency of two coupling formulations, the boundary element method (BEM)-meshless local Petrov–Galerkin (MLPG) versus the BEM-finite element method (FEM), used to simulate the elastic wave propagation in fluid-filled boreholes generated by a blast load, is compared. The longitudinal geometry is assumed to be invariant in the axial direction (2.5D formulation). The material properties in the vicinity of the borehole are assumed to be nonhomogeneous as a result of the construction process and the ageing of the material. In both models, the BEM is used to tackle the propagation within the fluid domain inside the borehole and the unbounded homogeneous domain. The MLPG and the FEM are used to simulate the confined, damaged, nonhomogeneous, surrounding borehole, thus utilizing the advantages of these methods in modeling nonhomogeneous bounded media. In both numerical techniques the coupling is accomplished directly at the nodal points located at the common interfaces. Continuity of stresses and displacements is imposed at the solid–solid interface, while continuity of normal stresses and displacements and null shear stress are prescribed at the fluid–solid interface. The performance of each coupled BEM-MLPG and BEM-FEM approach is determined using referenced results provided by an analytical solution developed for a circular multi-layered subdomain. The comparison of the coupled techniques is evaluated for different excitation frequencies, axial wavenumbers and degrees of freedom (nodal points).Ministerio de Economía y Competitividad BIA2013-43085-PCentro Informático Científico de Andalucía (CICA
    corecore