16 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Capacity analysis of wireless mesh networks

    Get PDF
    The next generation wireless· netWorks experienced agreat development with emergence of wireless mesh networks (WMNs), which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the· network capacity must be addressed to· exploit the optimum netWork performance. The wireless mesh network capacity analysis shows that the throughput of each mesh , node degrades in order of l/n with increasing number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis,Bottleneck collision domain, Medium access control (MAC) laye

    A Cooperative Framework for Reliable Multicast Forwarding in Mobile Ad Hoc NETworks

    Full text link

    \u27EVENT MESH\u27 TRIGGERED METHOD FOR HYBRID CLOUD CHAINING VIA TUNNELING

    Get PDF
    The evolution of cloud native application architectures has yielded infrastructures (comprising microservices, etc.) entailing a variety of challenges. The need exists for an optimum ‘Event Mesh’ type of technique for sending data via asynchronous event handling mechanisms across cloud scale data center sites (e.g., in different regions) that is agnostic to any underlying facilities. Such a sharing of contextual data between clusters across hybrid cloud environments may be referred to as ‘Hybrid Cloud Chaining’ within the context of the techniques that are presented herein. To address the types of challenges that were described above, techniques are presented herein that provide an adaptive Event Mesh-driven method to identify an optimum traffic engineered path, through the use of Segment Routing over Internet Protocol (IP) version 6 (SRv6) elements, for performing ‘cloud chaining’ across clusters in a hybrid cloud environment

    Geocasting and Multicasting Routing Operation in Mobile Ad Hoc Network

    Get PDF
    Abstract: The paper considers, the different multicasting routing protocols in wireless mobile Ad hoc network (MANET).An Ad hoc network is composed of mobile nodes without the presence of a wired support infrastructure .In this environment routing/multicasting protocols are faced with the challenge of producing multihop router under host mobility and band constraints. Various approaches and routing protocol have been proposed to address Ad hoc networking problems and multiple standardization effort within the Internet Engineering Task Force, along with academic and industrial research projects. In recent year, a number of new multicast protocols of different styles have been proposed for Ad hoc networks. Geocast Adaptive Mesh Environment for Routing [GAMER] is one which provides geocast communication in an Ad hoc network and it adapts to the correct network environment by dynamically changing the density of the mesh. Forwarding Group Multicast Protocol [FGMP] is based on the forward group concept and it dynamically refreshes the forward group member using a procedure to On-Demand routing. The relative strengths, weakness and applicability of each multicast protocol to diverse situations have considered and analyzed. Index Terms: FGMP Protocol, GAMER Protocol, MANETs, multicast, routing. An Ad hoc networks [1] [2] , is a dynamically reconfigurable wireless network with no fixed infrastructure (or) central administration. Due to the limited radio propagation range of wireless devices, routers are often "multihop". Applications such as disaster recovery, crowd control, search, rescue and automated battlefields are typical examples of where Ad hoc networks are deployed. Nodes in these networks more arbitrary thus network topology changes frequently and unpredictably. Moreover, bandwidth and battery power are limited. These constraints, in combination with the dynamic network topology make routing and multicasting in Ad hoc networks extremely challenging. Various multicast protocols have been newly proposed to perform multicasting in Ad hoc network. However, no operation study between them has yet been performed. The comparative analysis of Ad hoc unicast routing protocols has been reported. This paper gives a comparison study of two protocols with different characteristics: GAMER [3] and FGMP The rest of the paper is organized as follows. Section I presents an overview of the multicast protocols. The section II discusses the future enhancements, and concluding remarks are made in section III.

    Protocollo di routing HWMP per reti wireless mesh: sviluppo di un prototipo ed analisi sperimentale

    Get PDF
    Lo scopo di questa tesi è presentare l’implementazione del protocollo di routing HWMP che permette,attraverso complicati algoritmi di routing, una gestione efficiente delle reti mesh. All'interno dell'elaborato si descrive lo sviluppo software dell'HWMP, protocollo di routing a livello data-link, basato sul draft 802.11s e le procedure introdotte per ottimizzare l'instradamento dei frame. Si illustra poi l'implementazione di un prototipo reale di Wireless Mesh Network realizzato in laboratorio e le analisi sperimentali svolte su di esso con l'obbiettivo di validare l'intero lavoro svolto

    Management, Optimization and Evolution of the LHCb Online Network

    Get PDF
    The LHCb experiment is one of the four large particle detectors running at the Large Hadron Collider (LHC) at CERN. It is a forward single-arm spectrometer dedicated to test the Standard Model through precision measurements of Charge-Parity (CP) violation and rare decays in the b quark sector. The LHCb experiment will operate at a luminosity of 2x10^32cm-2s-1, the proton-proton bunch crossings rate will be approximately 10 MHz. To select the interesting events, a two-level trigger scheme is applied: the rst level trigger (L0) and the high level trigger (HLT). The L0 trigger is implemented in custom hardware, while HLT is implemented in software runs on the CPUs of the Event Filter Farm (EFF). The L0 trigger rate is dened at about 1 MHz, and the event size for each event is about 35 kByte. It is a serious challenge to handle the resulting data rate (35 GByte/s). The Online system is a key part of the LHCb experiment, providing all the IT services. It consists of three major components: the Data Acquisition (DAQ) system, the Timing and Fast Control (TFC) system and the Experiment Control System (ECS). To provide the services, two large dedicated networks based on Gigabit Ethernet are deployed: one for DAQ and another one for ECS, which are referred to Online network in general. A large network needs sophisticated monitoring for its successful operation. Commercial network management systems are quite expensive and dicult to integrate into the LHCb ECS. A custom network monitoring system has been implemented based on a Supervisory Control And Data Acquisition (SCADA) system called PVSS which is used by LHCb ECS. It is a homogeneous part of the LHCb ECS. In this thesis, it is demonstrated how a large scale network can be monitored and managed using tools originally made for industrial supervisory control. The thesis is organized as the follows: Chapter 1 gives a brief introduction to LHC and the B physics on LHC, then describes all sub-detectors and the trigger and DAQ system of LHCb from structure to performance. Chapter 2 first introduces the LHCb Online system and the dataflow, then focuses on the Online network design and its optimization. In Chapter 3, the SCADA system PVSS is introduced briefly, then the architecture and implementation of the network monitoring system are described in detail, including the front-end processes, the data communication and the supervisory layer. Chapter 4 first discusses the packet sampling theory and one of the packet sampling mechanisms: sFlow, then demonstrates the applications of sFlow for the network trouble-shooting, the traffic monitoring and the anomaly detection. In Chapter 5, the upgrade of LHC and LHCb is introduced, the possible architecture of DAQ is discussed, and two candidate internetworking technologies (high speed Ethernet and InfniBand) are compared in different aspects for DAQ. Three schemes based on 10 Gigabit Ethernet are presented and studied. Chapter 6 is a general summary of the thesis
    corecore