1,445 research outputs found

    Factors Associated with Immunization Opinion Leadership among Men Who Have Sex with Men in Los Angeles, California

    Get PDF
    We sought to identify the characteristics of men who have sex with men (MSM) who are opinion leaders on immunization issues and to identify potential opportunities to leverage their influence for vaccine promotion within MSM communities. Using venue-based sampling, we recruited and enrolled MSM living in Los Angeles (N = 520) from December 2016 to February 2017 and evaluated characteristic differences in sociodemographic characteristics, health behaviors, and technology use among those classified as opinion leaders versus those who were not. We also asked respondents about their past receipt of meningococcal serogroups A, C, W, and Y (MenACWY) and meningococcal B (MenB) vaccines, as well as their opinions on the importance of 13 additional vaccines. Multivariable results revealed that non-Hispanic black (aOR = 2.64; 95% CI: 1.17–5.95) and other race/ethnicity (aOR = 2.98; 95% CI: 1.41–6.29) respondents, as well as those with a history of an STI other than HIV (aOR = 1.95; 95% CI: 1.10–3.48), were more likely to be opinion leaders. MenACWY (aOR = 1.92; 95% CI: 1.13–3.25) and MenB (aOR = 3.09; 95% CI: 1.77–5.41) vaccine uptake, and perceived importance for these and seven additional vaccines, were also associated with being an opinion leader. The results suggest that the co-promotion of vaccination and other health promotion initiatives via opinion leaders could be a useful strategy for increasing vaccination among MSM

    Immunogenicity and safety of combined tetanus, reduced diphtheria, acellular pertussis vaccine when co-administered with quadrivalent meningococcal conjugate and human papillomavirus vaccines in healthy adolescents.

    Get PDF
    Objective: Current United States immunization recommendations for adolescents include vaccines against tetanus, diphtheria and pertussis (Tdap), human papillomavirus (HPV), and Neisseria meningitidis serogroups A, C, W-135, and Y. In this Phase IV study, we primarily investigated the impact of concomitant administration of a quadrivalent meningococcal CRM197-conjugate vaccine (MenACWY-CRM) with Tdap and HPV vaccines, in terms of immunogenicity to Tdap antigens and overall reactogenicity. Methods: A total of 801 healthy adolescents aged 10-18 years were randomized to one of two groups to receive either MenACWY-CRM or a placebo, co-administered with Tdap and a quadrivalent HPV vaccine (HPV4). Antibody responses to the Tdap antigens, as well as to meningococcal serogroups A, C, W-135, and Y, were assessed at one month post-vaccination. Safety and adverse events were monitored throughout the study. Results: One month post-vaccination, 95% and 99% of subjects in the MenACWY-CRM group had seroprotective antibody levels ( 651.0 IU/mL) against the diphtheria and tetanus toxoids, respectively, compared with 82% and 98% in the placebo group. Ratios of geometric mean concentrations of antibodies against pertussis antigens pertussis toxin, filamentous hemagglutinin and pertactin for the MenACWY-CRM group versus placebo were 1.01, 0.84, and 0.82, respectively. Predetermined non-inferiority criteria for immunological responses against all Tdap antigens were met. Co-administration of a single dose of MenACWY-CRM was well tolerated and elicited robust antibody responses against the four meningococcal serogroups, with 77%, 84%, 95% and 86% of subjects having seroprotective human complement serum bactericidal activity (titers 658) against serogroups A, C, W-135, and Y, respectively, one month post-vaccination. Conclusions: Collectively, these results demonstrate that the MenACWY-CRM, Tdap and HPV4 vaccines can be administered at the same visit without compromising Tdap immune responses or increasing reactogenicit

    Implementation of MenACWY vaccination because of ongoing increase in serogroup W invasive meningococcal disease, the Netherlands, 2018.

    Get PDF
    The annual incidence rate of serogroup W invasive meningococcal disease in the Netherlands increased from < 0.05/100,000 (n < 10) before 2015 to 0.5/100,000 (n = 80) in 2017. Most isolates (94%) belong to clonal complex 11. The incidence rate is highest among  < 5 year-olds and 15-24 year-olds. The case fatality rate was 12% (17/138) in 2015-2017. From May 2018, MenACWY vaccination replaces MenC vaccination at age 14 months and from October 2018, 13-14 year-olds are offered MenACWY vaccination

    Impact of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial

    Get PDF
    Background: Meningococcal conjugate vaccines protect individuals directly, but also confer herd protection by interrupting carriage transmission. This Phase III observer-blind, randomised, controlled study evaluated the effects of meningococcal quadrivalent (ACWY) glycoconjugate (MenACWY-CRM) or serogroup B (4CMenB) vaccination on meningococcal carriage rates in young adults. Methods: University students (aged 18–24 years) from ten sites in England were randomised to receive two vaccinations one month apart: two doses of Japanese Encephalitis vaccine (controls), two doses of 4CMenB (4CMenB), or one dose of MenACWY-CRM then placebo (MenACWY-CRM). Meningococci were isolated from oropharyngeal swabs collected before vaccination and at five scheduled intervals over one year. Primary analysis was cross-sectional carriage one month after the vaccine course; secondary analyses included comparison of carriage at any time point after primary analysis until study termination. Findings: 2954 subjects were randomised (control, n=987; 4CMenB, n=988; MenACWY-CRM, n=979); approximately one-third of each group was positive for meningococcal carriage at study entry. By one month, there was no significant difference in carriage between controls and 4CMenB (Odds Ratios (OR) [95% CI]; 1·2 [0·8−1·7]) or MenACWY-CRM (OR [95% CI], 0·9 [0·6–1·3]) groups. From three months after dose two, 4CMenB vaccination resulted in significantly lower carriage of any meningococcal strain (calculated efficacy 18·2% [95% CI: 3·4–30·8]) and capsular groups BCWY (calculated efficacy 26·6% [95% CI: 10·5–39·9]) compared to control vaccination. Significantly lower carriage rates were also observed in the MenACWY-CRM group compared with controls: calculated efficacies 39·0% [95%CI: 17·3-55·0] and 36.2% [95%CI: 15·6-51·7] for serogroups Y and CWY, respectively. Interpretation: MenACWY-CRM and 4CMenB vaccines reduced meningococcal carriage rates over 12 months post-vaccination and, therefore, may affect transmission where widely implemented

    Impact of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial

    Get PDF
    Background: Meningococcal conjugate vaccines protect individuals directly, but also confer herd protection by interrupting carriage transmission. This Phase III observer-blind, randomised, controlled study evaluated the effects of meningococcal quadrivalent (ACWY) glycoconjugate (MenACWY-CRM) or serogroup B (4CMenB) vaccination on meningococcal carriage rates in young adults. Methods: University students (aged 18–24 years) from ten sites in England were randomised to receive two vaccinations one month apart: two doses of Japanese Encephalitis vaccine (controls), two doses of 4CMenB (4CMenB), or one dose of MenACWY-CRM then placebo (MenACWY-CRM). Meningococci were isolated from oropharyngeal swabs collected before vaccination and at five scheduled intervals over one year. Primary analysis was cross-sectional carriage one month after the vaccine course; secondary analyses included comparison of carriage at any time point after primary analysis until study termination. Findings: 2954 subjects were randomised (control, n=987; 4CMenB, n=988; MenACWY-CRM, n=979); approximately one-third of each group was positive for meningococcal carriage at study entry. By one month, there was no significant difference in carriage between controls and 4CMenB (Odds Ratios (OR) [95% CI]; 1·2 [0·8−1·7]) or MenACWY-CRM (OR [95% CI], 0·9 [0·6–1·3]) groups. From three months after dose two, 4CMenB vaccination resulted in significantly lower carriage of any meningococcal strain (calculated efficacy 18·2% [95% CI: 3·4–30·8]) and capsular groups BCWY (calculated efficacy 26·6% [95% CI: 10·5–39·9]) compared to control vaccination. Significantly lower carriage rates were also observed in the MenACWY-CRM group compared with controls: calculated efficacies 39·0% [95%CI: 17·3-55·0] and 36.2% [95%CI: 15·6-51·7] for serogroups Y and CWY, respectively. Interpretation: MenACWY-CRM and 4CMenB vaccines reduced meningococcal carriage rates over 12 months post-vaccination and, therefore, may affect transmission where widely implemented

    Effectiveness of Meningococcal B Vaccine against Endemic Hypervirulent Neisseria meningitidis W Strain, England

    Get PDF
    Serum samples from children immunized with a meningococcal serogroup B vaccine demonstrated potent serum bactericidal antibody activity against the hypervirulent Neisseria meningitidis serogroup W strain circulating in England. The recent introduction of this vaccine into the United Kingdom national immunization program should also help protect infants against this endemic strain

    Vaccine

    Get PDF
    ObjectivesSeveral outbreaks of serogroup B meningococcal disease have occurred among university students in recent years. In the setting of high coverage of the quadrivalent meningococcal conjugate vaccine and prior to widespread use of serogroup B meningococcal vaccines among adolescents, we conducted surveys to characterize the prevalence and molecular characteristics of meningococcal carriage among university students.MethodsTwo cross-sectional oropharyngeal carriage surveys were conducted among undergraduates at a Rhode Island university. Isolates were characterized using slide agglutination, real-time polymerase chain reaction (rt-PCR), and whole genome sequencing. Adjusted prevalence ratios and 95% confidence intervals were calculated using Poisson regression to determine risk factors for carriage.ResultsA total of 1837 oropharyngeal specimens were obtained from 1478 unique participants. Overall carriage prevalence was 12.7\u201314.6% during the two survey rounds, with 1.8\u20132.6% for capsular genotype B, 0.9\u20131.0% for capsular genotypes C, W, or Y, and 9.9\u201310.8% for nongroupable strains by rt-PCR. Meningococcal carriage was associated with being male, smoking, party or club attendance, recent antibiotic use (inverse correlation), and recent respiratory infections.ConclusionsIn this university setting, the majority of meningococcal carriage was due to nongroupable strains, followed by serogroup B. Further evaluation is needed to understand the dynamics of serogroup B carriage and disease among university students.CC999999/Intramural CDC HHS/United States2018-01-02T00:00:00Z29183735PMC573755

    Recommended immunization schedule for children and adolescents aged 18 years or younger, United States, 2018

    Get PDF
    \u2022 Consult relevant ACIP statements for detailed recommendations (www.cdc.gov/vaccines/hcp/acip-recs/index.html).\u2022 When a vaccine is not administered at the recommended age, administer at a subsequent visit.\u2022 Use combination vaccines instead of separate injections when appropriate.\u2022 Report clinically significant adverse events to the Vaccine Adverse Event Reporting System (VAERS) online (www.vaers.hhs.gov) or by telephone (800-822-7967).\u2022 Report suspected cases of reportable vaccine-preventable diseases to your state or local health department.\u2022 For information about precautions and contraindications, see www. cdc.gov/vaccines/hcp/acip-recs/general-recs/contraindications.html.Approved by the\u2022 Advisory Committee on Immunization Practices (www.cdc.gov/vaccines/acip)\u2022 American Academy of Pediatrics (www.aap.org)\u2022 American Academy of Family Physicians (www.aafp.org)\u2022 American College of Obstetricians and Gynecologists (www.acog.org)This schedule includes recommendations in effect as of January 1, 2018.CS270457-MPublication date from document properties.0-18yrs-child-combined-schedule.pdfFigure 1. Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger\u2014United States, 2018. -- FIGURE 2. Catch-up immunization schedule for persons aged 4 months\u201318 years who start late or who are more than 1 month behind\u2014United States, 2018. -- Figure 3, Vaccines that might be indicated for children and adolescents aged 18 years or younger based on medical indications Footnotes \u2014 Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger, UNITED STATES, 2018.CurrentACIPPrevention and ControlInfectious Diseaseno validation dateSupersede

    Serogroup C Neisseria meningitidis disease epidemiology, seroprevalence, vaccine effectiveness and waning immunity, England, 1998/99 to 2015/16.

    Get PDF
    Background In 1999, the United Kingdom (UK) was the first country to introduce meningococcal group C (MenC) conjugate vaccination. This vaccination programme has evolved with further understanding, new vaccines and changing disease epidemiology. Aim To characterise MenC disease and population protection against MenC disease in England. Methods Between 1998/99-2015/16, surveillance data from England for laboratory-confirmed MenC cases were collated; using the screening method, we updated vaccine effectiveness (VE) estimates. Typing data and genomes were obtained from the Meningitis Research Foundation Meningococcus Genome Library and PubMLST Neisseria database. Phylogenetic network analysis of MenC cc11 isolates was undertaken. We compared bactericidal antibody assay results using anonymised sera from 2014 to similar data from 1996-1999, 2000-2004 and 2009. Results MenC cases fell from 883 in 1998/99 (1.81/100,000 population) to 42 cases (0.08/100,000 population) in 2015/16. Lower VE over time since vaccination was observed after infant immunisation (p = 0.009) and a single dose at 1-4 years (p = 0.03). After vaccination at 5-18 years, high VE was sustained for ≥ 8 years; 95.0% (95% CI: 76.0- 99.5%). Only 25% (75/299) children aged 1-14 years were seroprotected against MenC disease in 2014. Recent case isolates mostly represented two cc11 strains. Conclusion High quality surveillance has furthered understanding of MenC vaccines and improved schedules, maximising population benefit. The UK programme provides high direct and indirect protection despite low levels of seroprotection in some age groups. High-resolution characterisation supports ongoing surveillance of distinct MenC cc11 lineages
    corecore