4 research outputs found

    TOWARD HIGHLY SECURE AND AUTONOMIC COMPUTING SYSTEMS: A HIERARCHICAL APPROACH

    Get PDF
    The overall objective of this research project is to develop novel architectural techniques as well as system software to achieve a highly secure and intrusion-tolerant computing system. Such system will be autonomous, self-adapting, introspective, with self-healing capability under the circumstances of improper operations, abnormal workloads, and malicious attacks. The scope of this research includes: (1) System-wide, unified introspection techniques for autonomic systems, (2) Secure information-flow microarchitecture, (3) Memory-centric security architecture, (4) Authentication control and its implication to security, (5) Digital right management, (5) Microarchitectural denial-of-service attacks on shared resources. During the period of the project, we developed several architectural techniques and system software for achieving a robust, secure, and reliable computing system toward our goal

    Securing unikernels in cloud infrastructures

    Get PDF
    PhD ThesisCloud computing adoption has seen an increase during the last few years. However, cloud tenants are still concerned about the security that the Cloud Service Provider (CSP) offers. Recent security incidents in cloud infrastructures that exploit vulnerabilities in the software layer highlight the need to develop new protection mechanisms. A recent direction in cloud computing is toward massive consolidation of resources by using lightweight Virtual Machines (VMs) called unikernels. Unikernels are specialised VMs that eliminate the Operating System (OS) layer and include the advantages of small footprint, minimal attack surface, nearinstant boot times and multi-platform deployment. Even though using unikernels has certain advantages, unikernels employ a number of shortcomings. First, unikernels do not employ context switching from user to kernel mode. A malicious user could exploit this shortcoming to escape the isolation boundaries that the hypervisor provides. Second, having a large number of unikernels in a single virtualised host creates complex security policies that are difficult to manage and can introduce exploitable misconfigurations. Third, malicious insiders, such as disgruntled system administrators can use privileged software to exfiltrate data from unikernels. In this thesis, we divide our research into two parts, concerning the development of software and hardware-based protection mechanisms for cloud infrastructures that focus on unikernels. In each part, we propose a new protection mechanism for cloud infrastructures, where tenants develop their workloads using unikernels. In the first part, we propose a software-based protection mechanism that controls access to resources, which results on creating least-privileged unikernels. Current access-control mechanisms that reside in hypervisors do not confine unikernels to accepted behaviour and are susceptible to privilege escalation and Virtual Machine escapes attacks. Therefore, current hypervisors need to take into account the possibility of having one or more malicious unikernels and rethink their access-control mechanisms. We designed and implemented VirtusCap, a capability-based access control mechanism that acts as a lower layer of regulating access to resources in cloud infrastructures. Consequently, unikernels are only assigned the privileges required to perform their task. This ensures that the accesscontrol mechanism that resides in the hypervisor will only grant access to resources specified with capabilities. In addition, capabilities are easier to delegate to other unikernels when they need to and the security policies are less complex. Our performance evaluation shows that up to request rate of 7000 (req/sec) our prototype’s response time is identical to XSM-Flask. In the second part, we address the following problem: how to guarantee the confidentiality and integrity of computations executing in a unikernel even in the presence of privileged software used by malicious insiders? A research prototype was designed and implemented called UniGuard, which aims to protect unikernels from an untrusted cloud, by executing the sensitive computations inside secure enclaves. This approach provides confidentiality and integrity guarantees for unikernels against software and certain physical attacks. We show how we integrated Intel SGX with unikernels and added the ability to spawn enclaves that execute the sensitive computations. We conduct experiments to evaluate the performance of UniGuard, which show that UniGuard exhibits acceptable performance overhead in comparison to when the sensitive computations are not executed inside a enclave. To the best of our knowledge, UniGuard is the first solution that protects the confidentiality and integrity of computations that execute inside unikernels using Intel SGX. Currently, unikernels drive the next generation of virtualisation software and especially the cooperation with other virtualisation technologies, such as containers to form hybrid virtualisation workloads. Thus, it is paramount to scrutinise the security of unikernels in cloud infrastructures and propose novel protection mechanisms that will drive the next cloud evolution

    Memory-centric Security Architecture

    No full text
    Abstract. This paper presents a new security architecture for protecting software confidentiality and integrity. Different from the previous process-centric systems designed for the same purpose, the new architecture ties cryptographic properties and security attributes to memory instead of each individual user process. The advantages of such a memory centric design are many folds. First, it provides a better security model and access control on software privacy that supports both selective and mixed tamper resistant protection on software components from heterogeneous sources. Second, the new model supports and facilities tamper resistant secure information sharing in an open software system where both data and code components could be shared by different user processes. Third, the proposed security model and secure processor design allow software components protected with different security policies to inter-operate within the same memory space efficiently. Our new architectural support requires small silicon resources and its performance impact is minimal based on our experimental results using commercial MS Windows workloads and cycle based out-of-order processor simulation.
    corecore