218 research outputs found

    Memory-efficient architecture of 2-D dual-mode discrete wavelet transform using lifting scheme for motion-JPEG2000

    Get PDF
    [[abstract]]In this work, we propose a memory-efficient architecture of lifting based two-dimensional discrete wavelet transform (2D DWT) for motion-JPEG2000. The proposed 2D DWT architecture consists of a 1D row processor, internal memory, and a 1D column processor. The main advantage of this 2D DWT is to reduce the internal memory requirement significantly. For an NtimesN image, only 2N and 4N sizes of internal memory are required for the 5/3 and 9/7 filters, respectively, to perform the one-level 2D DWT decomposition. Moreover, it supports both lossless and lossy operation for 5/3 and 9/7 filters with high operation speed. The proposed 2D DWT surpasses the existed lifting-based designs in the aspects of low internal memory requirement. It is suitable for VLSI implementation and can support various real-time image/video applications such as JPEG2000, motion-JPEG2000, MPEG-4 still texture object decoding, and wavelet-based scalable video coding.[[notice]]需補會議日期、性質、主辦單位[[conferencedate]]20090524~2009052

    A VLSI architecture of JPEG2000 encoder

    Get PDF
    Copyright @ 2004 IEEEThis paper proposes a VLSI architecture of JPEG2000 encoder, which functionally consists of two parts: discrete wavelet transform (DWT) and embedded block coding with optimized truncation (EBCOT). For DWT, a spatial combinative lifting algorithm (SCLA)-based scheme with both 5/3 reversible and 9/7 irreversible filters is adopted to reduce 50% and 42% multiplication computations, respectively, compared with the conventional lifting-based implementation (LBI). For EBCOT, a dynamic memory control (DMC) strategy of Tier-1 encoding is adopted to reduce 60% scale of the on-chip wavelet coefficient storage and a subband parallel-processing method is employed to speed up the EBCOT context formation (CF) process; an architecture of Tier-2 encoding is presented to reduce the scale of on-chip bitstream buffering from full-tile size down to three-code-block size and considerably eliminate the iterations of the rate-distortion (RD) truncation.This work was supported in part by the China National High Technologies Research Program (863) under Grant 2002AA1Z142

    Discrete Wavelet Transform Core for Image Processing Applications

    Get PDF
    This paper presents a flexible hardware architecture for performing the Discrete Wavelet Transform (DWT) on a digital image. The proposed architecture uses a variation of the lifting scheme technique and provides advantages that include small memory requirements, fixed-point arithmetic implementation, and a small number of arithmetic computations. The DWT core may be used for image processing operations, such as denoising and image compression. For example, the JPEG2000 still image compression standard uses the Cohen-Daubechies-Favreau (CDF) 5/3 and CDF 9/7 DWT for lossless and lossy image compression respectively. Simple wavelet image denoising techniques resulted in improved images up to 27 dB PSNR. The DWT core is modeled using MATLAB and VHDL. The VHDL model is synthesized to a Xilinx FPGA to demonstrate hardware functionality. The CDF 5/3 and CDF 9/7 versions of the DWT are both modeled and used as comparisons. The execution time for performing both DWTs is nearly identical at approximately 14 clock cycles per image pixel for one level of DWT decomposition. The hardware area generated for the CDF 5/3 is around 15,000 gates using only 5% of the Xilinx FPGA hardware area, at 2.185 MHz max clock speed and 24 mW power consumption
    corecore