77 research outputs found

    Sense, Think, Grasp: A study on visual and tactile information processing for autonomous manipulation

    Get PDF
    Interacting with the environment using hands is one of the distinctive abilities of humans with respect to other species. This aptitude reflects on the crucial role played by objects\u2019 manipulation in the world that we have shaped for us. With a view of bringing robots outside industries for supporting people during everyday life, the ability of manipulating objects autonomously and in unstructured environments is therefore one of the basic skills they need. Autonomous manipulation is characterized by great complexity especially regarding the processing of sensors information to perceive the surrounding environment. Humans rely on vision for wideranging tridimensional information, prioprioception for the awareness of the relative position of their own body in the space and the sense of touch for local information when physical interaction with objects happens. The study of autonomous manipulation in robotics aims at transferring similar perceptive skills to robots so that, combined with state of the art control techniques, they could be able to achieve similar performance in manipulating objects. The great complexity of this task makes autonomous manipulation one of the open problems in robotics that has been drawing increasingly the research attention in the latest years. In this work of Thesis, we propose possible solutions to some key components of autonomous manipulation, focusing in particular on the perception problem and testing the developed approaches on the humanoid robotic platform iCub. When available, vision is the first source of information to be processed for inferring how to interact with objects. The object modeling and grasping pipeline based on superquadric functions we designed meets this need, since it reconstructs the object 3D model from partial point cloud and computes a suitable hand pose for grasping the object. Retrieving objects information with touch sensors only is a relevant skill that becomes crucial when vision is occluded, as happens for instance during physical interaction with the object. We addressed this problem with the design of a novel tactile localization algorithm, named Memory Unscented Particle Filter, capable of localizing and recognizing objects relying solely on 3D contact points collected on the object surface. Another key point of autonomous manipulation we report on in this Thesis work is bi-manual coordination. The execution of more advanced manipulation tasks in fact might require the use and coordination of two arms. Tool usage for instance often requires a proper in-hand object pose that can be obtained via dual-arm re-grasping. In pick-and-place tasks sometimes the initial and target position of the object do not belong to the same arm workspace, then requiring to use one hand for lifting the object and the other for locating it in the new position. At this regard, we implemented a pipeline for executing the handover task, i.e. the sequences of actions for autonomously passing an object from one robot hand on to the other. The contributions described thus far address specific subproblems of the more complex task of autonomous manipulation. This actually differs from what humans do, in that humans develop their manipulation skills by learning through experience and trial-and-error strategy. Aproper mathematical formulation for encoding this learning approach is given by Deep Reinforcement Learning, that has recently proved to be successful in many robotics applications. For this reason, in this Thesis we report also on the six month experience carried out at Berkeley Artificial Intelligence Research laboratory with the goal of studying Deep Reinforcement Learning and its application to autonomous manipulation

    Haptic Sequential Monte Carlo Localization for Quadrupedal Locomotion in Vision-Denied Scenarios

    Full text link
    Continuous robot operation in extreme scenarios such as underground mines or sewers is difficult because exteroceptive sensors may fail due to fog, darkness, dirt or malfunction. So as to enable autonomous navigation in these kinds of situations, we have developed a type of proprioceptive localization which exploits the foot contacts made by a quadruped robot to localize against a prior map of an environment, without the help of any camera or LIDAR sensor. The proposed method enables the robot to accurately re-localize itself after making a sequence of contact events over a terrain feature. The method is based on Sequential Monte Carlo and can support both 2.5D and 3D prior map representations. We have tested the approach online and onboard the ANYmal quadruped robot in two different scenarios: the traversal of a custom built wooden terrain course and a wall probing and following task. In both scenarios, the robot is able to effectively achieve a localization match and to execute a desired pre-planned path. The method keeps the localization error down to 10cm on feature rich terrain by only using its feet, kinematic and inertial sensing.Comment: 7 pages, 8 figures, 1 table. Accepted at IEEE/RSJ IROS 202

    Hybrid Architectures for Object Pose and Velocity Tracking at the Intersection of Kalman Filtering and Machine Learning

    Get PDF
    The study of object perception algorithms is fundamental for the development of robotic platforms capable of planning and executing actions involving objects with high precision, reliability and safety. Indeed, this topic has been vastly explored in both the robotic and computer vision research communities using diverse techniques, ranging from classical Bayesian filtering to more modern Machine Learning techniques, and complementary sensing modalities such as vision and touch. Recently, the ever-growing availability of tools for synthetic data generation has substantially increased the adoption of Deep Learning for both 2D tasks, as object detection and segmentation, and 6D tasks, such as object pose estimation and tracking. The proposed methods exhibit interesting performance on computer vision benchmarks and robotic tasks, e.g. using object pose estimation for grasp planning purposes. Nonetheless, they generally do not consider useful information connected with the physics of the object motion and the peculiarities and requirements of robotic systems. Examples are the necessity to provide well-behaved output signals for robot motion control, the possibility to integrate modelling priors on the motion of the object and algorithmic priors. These help exploit the temporal correlation of the object poses, handle the pose uncertainties and mitigate the effect of outliers. Most of these concepts are considered in classical approaches, e.g. from the Bayesian and Kalman filtering literature, which however are not as powerful as Deep Learning in handling visual data. As a consequence, the development of hybrid architectures that combine the best features from both worlds is particularly appealing in a robotic setting. Motivated by these considerations, in this Thesis, I aimed at devising hybrid architectures for object perception, focusing on the task of object pose and velocity tracking. The proposed architectures use Kalman filtering supported by state-of-the-art Deep Neural Networks to track the 6D pose and velocity of objects from images. The devised solutions exhibit state-of-the-art performance, increased modularity and do not require training to implement the actual tracking behaviors. Furthermore, they can track even fast object motions despite the possible non-negligible inference times of the adopted neural networks. Also, by relying on data-driven Kalman filtering, I explored a paradigm that enables to track the state of systems that cannot be easily modeled analytically. Specifically, I used this approach to learn the measurement model of soft 3D tactile sensors and address the problem of tracking the sliding motion of hand-held objects

    Learning a State Estimator for Tactile In-Hand Manipulation

    Get PDF
    We study the problem of estimating the pose of an object which is being manipulated by a multi-fingered robotic hand by only using proprioceptive feedback. To address this challenging problem, we propose a novel variant of differentiable particle filters, which combines two key extensions. First, our learned proposal distribution incorporates recent measurements in a way that mitigates weight degeneracy. Second, the particle update works on non-euclidean manifolds like Lie-groups, enabling learning-based pose estimation in 3D on SE(3). We show that the method can represent the rich and often multi-modal distributions over poses that arise in tactile state estimation. The models are trained in simulation, but by using domain randomization, we obtain state estimators that can be employed for pose estimation on a real robotic hand (equipped with joint torque sensors). Moreover, the estimator runs fast, allowing for online usage with update rates of more than 100 Hz on a single CPU core. We quantitatively evaluate our method and benchmark it against other approaches in simulation. We also show qualitative experiments on the real torque-controlled DLR-Hand II
    • …
    corecore