47,582 research outputs found

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    Herbert Simon's decision-making approach: Investigation of cognitive processes in experts

    Get PDF
    This is a post print version of the article. The official published can be obtained from the links below - PsycINFO Database Record (c) 2010 APA, all rights reserved.Herbert Simon's research endeavor aimed to understand the processes that participate in human decision making. However, despite his effort to investigate this question, his work did not have the impact in the “decision making” community that it had in other fields. His rejection of the assumption of perfect rationality, made in mainstream economics, led him to develop the concept of bounded rationality. Simon's approach also emphasized the limitations of the cognitive system, the change of processes due to expertise, and the direct empirical study of cognitive processes involved in decision making. In this article, we argue that his subsequent research program in problem solving and expertise offered critical tools for studying decision-making processes that took into account his original notion of bounded rationality. Unfortunately, these tools were ignored by the main research paradigms in decision making, such as Tversky and Kahneman's biased rationality approach (also known as the heuristics and biases approach) and the ecological approach advanced by Gigerenzer and others. We make a proposal of how to integrate Simon's approach with the main current approaches to decision making. We argue that this would lead to better models of decision making that are more generalizable, have higher ecological validity, include specification of cognitive processes, and provide a better understanding of the interaction between the characteristics of the cognitive system and the contingencies of the environment

    Rational physical agent reasoning beyond logic

    No full text
    The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical requirements of programmability by non-programmer engineers and at the same time permitting fast realtime operation of agents on digital computer networks. The objective of the new framework is to enable the satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep underwater exploration, defense reconnaissance, automated manufacturing and household automation

    Behavioral Aspects of Organizational Learning and Adaptation

    Get PDF
    In this paper, I seek to understand the behavioral basis of higher organizational learning and adaption as a teleological dynamic equilibrium process to decipher the underlying psycho-physiological aspects of individual cognitive learning related to organizational adaption. Dynamics of cognitive learning has some differential paths within the neural circuitry which follows certain patterns that leads to individual as well as organized evolution in course of a learning process. I undertake a comparative analysis of human cognitive and behavioral changes and the active mechanisms underlying animal behavior and learning processes to understand the differential patterns of these adaptive changes in these two species. Cognitive behavioral learning processes have certain economic perspectives which help an individual to attain efficiency in workplace adaptation and in learning which however, the individual when being part of an alliance, ember positive influence on the society or organization as a whole. Comparatively, in primates, I review some empirical evidences drawn from chronological studies about cognitive behavioral learning process and adaptation as well as the presence of the capacity of making attributions about mental states, which exists in rudimentary form in chimpanzees and apes. Following this, I apply the outcomes of the findings on different aspects of human cognitive and adaptive behavioral learning-induced evolutionary changes and how human beings are able to exploit the presence of these additive advantages under cluster settings.Animal behavior, cognitive economics, motivational energy, neural adaptation, neuroscience, Organizational learning, organizational adaptation, teleological process

    Logic, self-awareness and self-improvement: The metacognitive loop and the problem of brittleness

    Get PDF
    This essay describes a general approach to building perturbation-tolerant autonomous systems, based on the conviction that artificial agents should be able notice when something is amiss, assess the anomaly, and guide a solution into place. We call this basic strategy of self-guided learning the metacognitive loop; it involves the system monitoring, reasoning about, and, when necessary, altering its own decision-making components. In this essay, we (a) argue that equipping agents with a metacognitive loop can help to overcome the brittleness problem, (b) detail the metacognitive loop and its relation to our ongoing work on time-sensitive commonsense reasoning, (c) describe specific, implemented systems whose perturbation tolerance was improved by adding a metacognitive loop, and (d) outline both short-term and long-term research agendas

    Design and anticipation: towards an organisational view of design systems

    Get PDF
    • 

    corecore