2 research outputs found

    Memory Augmented Neural Model for Incremental Session-based Recommendation

    Full text link
    Increasing concerns with privacy have stimulated interests in Session-based Recommendation (SR) using no personal data other than what is observed in the current browser session. Existing methods are evaluated in static settings which rarely occur in real-world applications. To better address the dynamic nature of SR tasks, we study an incremental SR scenario, where new items and preferences appear continuously. We show that existing neural recommenders can be used in incremental SR scenarios with small incremental updates to alleviate computation overhead and catastrophic forgetting. More importantly, we propose a general framework called Memory Augmented Neural model (MAN). MAN augments a base neural recommender with a continuously queried and updated nonparametric memory, and the predictions from the neural and the memory components are combined through another lightweight gating network. We empirically show that MAN is well-suited for the incremental SR task, and it consistently outperforms state-of-the-art neural and nonparametric methods. We analyze the results and demonstrate that it is particularly good at incrementally learning preferences on new and infrequent items.Comment: Accepted as a full paper at IJCAI 202

    ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation

    Full text link
    Session-based recommendation has received growing attention recently due to the increasing privacy concern. Despite the recent success of neural session-based recommenders, they are typically developed in an offline manner using a static dataset. However, recommendation requires continual adaptation to take into account new and obsolete items and users, and requires "continual learning" in real-life applications. In this case, the recommender is updated continually and periodically with new data that arrives in each update cycle, and the updated model needs to provide recommendations for user activities before the next model update. A major challenge for continual learning with neural models is catastrophic forgetting, in which a continually trained model forgets user preference patterns it has learned before. To deal with this challenge, we propose a method called Adaptively Distilled Exemplar Replay (ADER) by periodically replaying previous training samples (i.e., exemplars) to the current model with an adaptive distillation loss. Experiments are conducted based on the state-of-the-art SASRec model using two widely used datasets to benchmark ADER with several well-known continual learning techniques. We empirically demonstrate that ADER consistently outperforms other baselines, and it even outperforms the method using all historical data at every update cycle. This result reveals that ADER is a promising solution to mitigate the catastrophic forgetting issue towards building more realistic and scalable session-based recommenders.Comment: Accepted at RecSys 202
    corecore