2,315 research outputs found

    Ad Hoc Microphone Array Calibration: Euclidean Distance Matrix Completion Algorithm and Theoretical Guarantees

    Get PDF
    This paper addresses the problem of ad hoc microphone array calibration where only partial information about the distances between microphones is available. We construct a matrix consisting of the pairwise distances and propose to estimate the missing entries based on a novel Euclidean distance matrix completion algorithm by alternative low-rank matrix completion and projection onto the Euclidean distance space. This approach confines the recovered matrix to the EDM cone at each iteration of the matrix completion algorithm. The theoretical guarantees of the calibration performance are obtained considering the random and locally structured missing entries as well as the measurement noise on the known distances. This study elucidates the links between the calibration error and the number of microphones along with the noise level and the ratio of missing distances. Thorough experiments on real data recordings and simulated setups are conducted to demonstrate these theoretical insights. A significant improvement is achieved by the proposed Euclidean distance matrix completion algorithm over the state-of-the-art techniques for ad hoc microphone array calibration.Comment: In Press, available online, August 1, 2014. http://www.sciencedirect.com/science/article/pii/S0165168414003508, Signal Processing, 201

    LibriWASN: A Data Set for Meeting Separation, Diarization, and Recognition with Asynchronous Recording Devices

    Full text link
    We present LibriWASN, a data set whose design follows closely the LibriCSS meeting recognition data set, with the marked difference that the data is recorded with devices that are randomly positioned on a meeting table and whose sampling clocks are not synchronized. Nine different devices, five smartphones with a single recording channel and four microphone arrays, are used to record a total of 29 channels. Other than that, the data set follows closely the LibriCSS design: the same LibriSpeech sentences are played back from eight loudspeakers arranged around a meeting table and the data is organized in subsets with different percentages of speech overlap. LibriWASN is meant as a test set for clock synchronization algorithms, meeting separation, diarization and transcription systems on ad-hoc wireless acoustic sensor networks. Due to its similarity to LibriCSS, meeting transcription systems developed for the former can readily be tested on LibriWASN. The data set is recorded in two different rooms and is complemented with ground-truth diarization information of who speaks when.Comment: Accepted for presentation at the ITG conference on Speech Communication 202

    Spatial Diarization for Meeting Transcription with Ad-Hoc Acoustic Sensor Networks

    Full text link
    We propose a diarization system, that estimates "who spoke when" based on spatial information, to be used as a front-end of a meeting transcription system running on the signals gathered from an acoustic sensor network (ASN). Although the spatial distribution of the microphones is advantageous, exploiting the spatial diversity for diarization and signal enhancement is challenging, because the microphones' positions are typically unknown, and the recorded signals are initially unsynchronized in general. Here, we approach these issues by first blindly synchronizing the signals and then estimating time differences of arrival (TDOAs). The TDOA information is exploited to estimate the speakers' activity, even in the presence of multiple speakers being simultaneously active. This speaker activity information serves as a guide for a spatial mixture model, on which basis the individual speaker's signals are extracted via beamforming. Finally, the extracted signals are forwarded to a speech recognizer. Additionally, a novel initialization scheme for spatial mixture models based on the TDOA estimates is proposed. Experiments conducted on real recordings from the LibriWASN data set have shown that our proposed system is advantageous compared to a system using a spatial mixture model, which does not make use of external diarization information.Comment: Accepted at Asilomar Conference on Signals, Systems, and Computers 202

    Sample Drop Detection for Distant-speech Recognition with Asynchronous Devices Distributed in Space

    Full text link
    In many applications of multi-microphone multi-device processing, the synchronization among different input channels can be affected by the lack of a common clock and isolated drops of samples. In this work, we address the issue of sample drop detection in the context of a conversational speech scenario, recorded by a set of microphones distributed in space. The goal is to design a neural-based model that given a short window in the time domain, detects whether one or more devices have been subjected to a sample drop event. The candidate time windows are selected from a set of large time intervals, possibly including a sample drop, and by using a preprocessing step. The latter is based on the application of normalized cross-correlation between signals acquired by different devices. The architecture of the neural network relies on a CNN-LSTM encoder, followed by multi-head attention. The experiments are conducted using both artificial and real data. Our proposed approach obtained F1 score of 88% on an evaluation set extracted from the CHiME-5 corpus. A comparable performance was found in a larger set of experiments conducted on a set of multi-channel artificial scenes.Comment: Submitted to ICASSP 202
    • …
    corecore