7 research outputs found

    Utterance-Wise Meeting Transcription System Using Asynchronous Distributed Microphones

    Full text link
    A novel framework for meeting transcription using asynchronous microphones is proposed in this paper. It consists of audio synchronization, speaker diarization, utterance-wise speech enhancement using guided source separation, automatic speech recognition, and duplication reduction. Doing speaker diarization before speech enhancement enables the system to deal with overlapped speech without considering sampling frequency mismatch between microphones. Evaluation on our real meeting datasets showed that our framework achieved a character error rate (CER) of 28.7 % by using 11 distributed microphones, while a monaural microphone placed on the center of the table had a CER of 38.2 %. We also showed that our framework achieved CER of 21.8 %, which is only 2.1 percentage points higher than the CER in headset microphone-based transcription.Comment: Accepted to INTERSPEECH 202

    Block-Online Guided Source Separation

    Full text link
    We propose a block-online algorithm of guided source separation (GSS). GSS is a speech separation method that uses diarization information to update parameters of the generative model of observation signals. Previous studies have shown that GSS performs well in multi-talker scenarios. However, it requires a large amount of calculation time, which is an obstacle to the deployment of online applications. It is also a problem that the offline GSS is an utterance-wise algorithm so that it produces latency according to the length of the utterance. With the proposed algorithm, block-wise input samples and corresponding time annotations are concatenated with those in the preceding context and used to update the parameters. Using the context enables the algorithm to estimate time-frequency masks accurately only from one iteration of optimization for each block, and its latency does not depend on the utterance length but predetermined block length. It also reduces calculation cost by updating only the parameters of active speakers in each block and its context. Evaluation on the CHiME-6 corpus and a meeting corpus showed that the proposed algorithm achieved almost the same performance as the conventional offline GSS algorithm but with 32x faster calculation, which is sufficient for real-time applications.Comment: Accepted to SLT 202

    Meeting Transcription Using Virtual Microphone Arrays

    Full text link
    We describe a system that generates speaker-annotated transcripts of meetings by using a virtual microphone array, a set of spatially distributed asynchronous recording devices such as laptops and mobile phones. The system is composed of continuous audio stream alignment, blind beamforming, speech recognition, speaker diarization using prior speaker information, and system combination. When utilizing seven input audio streams, our system achieves a word error rate (WER) of 22.3% and comes within 3% of the close-talking microphone WER on the non-overlapping speech segments. The speaker-attributed WER (SAWER) is 26.7%. The relative gains in SAWER over the single-device system are 14.8%, 20.3%, and 22.4% for three, five, and seven microphones, respectively. The presented system achieves a 13.6% diarization error rate when 10% of the speech duration contains more than one speaker. The contribution of each component to the overall performance is also investigated, and we validate the system with experiments on the NIST RT-07 conference meeting test set

    Neural Speech Separation Using Spatially Distributed Microphones

    Full text link
    This paper proposes a neural network based speech separation method using spatially distributed microphones. Unlike with traditional microphone array settings, neither the number of microphones nor their spatial arrangement is known in advance, which hinders the use of conventional multi-channel speech separation neural networks based on fixed size input. To overcome this, a novel network architecture is proposed that interleaves inter-channel processing layers and temporal processing layers. The inter-channel processing layers apply a self-attention mechanism along the channel dimension to exploit the information obtained with a varying number of microphones. The temporal processing layers are based on a bidirectional long short term memory (BLSTM) model and applied to each channel independently. The proposed network leverages information across time and space by stacking these two kinds of layers alternately. Our network estimates time-frequency (TF) masks for each speaker, which are then used to generate enhanced speech signals either with TF masking or beamforming. Speech recognition experimental results show that the proposed method significantly outperforms baseline multi-channel speech separation systems.Comment: 5 pages, 2 figures, Interspeech202

    Continuous Speech Separation with Ad Hoc Microphone Arrays

    Full text link
    Speech separation has been shown effective for multi-talker speech recognition. Under the ad hoc microphone array setup where the array consists of spatially distributed asynchronous microphones, additional challenges must be overcome as the geometry and number of microphones are unknown beforehand. Prior studies show, with a spatial-temporalinterleaving structure, neural networks can efficiently utilize the multi-channel signals of the ad hoc array. In this paper, we further extend this approach to continuous speech separation. Several techniques are introduced to enable speech separation for real continuous recordings. First, we apply a transformer-based network for spatio-temporal modeling of the ad hoc array signals. In addition, two methods are proposed to mitigate a speech duplication problem during single talker segments, which seems more severe in the ad hoc array scenarios. One method is device distortion simulation for reducing the acoustic mismatch between simulated training data and real recordings. The other is speaker counting to detect the single speaker segments and merge the output signal channels. Experimental results for AdHoc-LibiCSS, a new dataset consisting of continuous recordings of concatenated LibriSpeech utterances obtained by multiple different devices, show the proposed separation method can significantly improve the ASR accuracy for overlapped speech with little performance degradation for single talker segments

    Far-Field Automatic Speech Recognition

    Full text link
    The machine recognition of speech spoken at a distance from the microphones, known as far-field automatic speech recognition (ASR), has received a significant increase of attention in science and industry, which caused or was caused by an equally significant improvement in recognition accuracy. Meanwhile it has entered the consumer market with digital home assistants with a spoken language interface being its most prominent application. Speech recorded at a distance is affected by various acoustic distortions and, consequently, quite different processing pipelines have emerged compared to ASR for close-talk speech. A signal enhancement front-end for dereverberation, source separation and acoustic beamforming is employed to clean up the speech, and the back-end ASR engine is robustified by multi-condition training and adaptation. We will also describe the so-called end-to-end approach to ASR, which is a new promising architecture that has recently been extended to the far-field scenario. This tutorial article gives an account of the algorithms used to enable accurate speech recognition from a distance, and it will be seen that, although deep learning has a significant share in the technological breakthroughs, a clever combination with traditional signal processing can lead to surprisingly effective solutions.Comment: accepted for Proceedings of the IEE

    A Review of Speaker Diarization: Recent Advances with Deep Learning

    Full text link
    Speaker diarization is a task to label audio or video recordings with classes that correspond to speaker identity, or in short, a task to identify "who spoke when". In the early years, speaker diarization algorithms were developed for speech recognition on multispeaker audio recordings to enable speaker adaptive processing. These algorithms also gained their own value as a standalone application over time to provide speaker-specific metainformation for downstream tasks such as audio retrieval. More recently, with the emergence of deep learning technology, which has driven revolutionary changes in research and practices across speech application domains, rapid advancements have been made for speaker diarization. In this paper, we review not only the historical development of speaker diarization technology but also the recent advancements in neural speaker diarization approaches. Furthermore, we discuss how speaker diarization systems have been integrated with speech recognition applications and how the recent surge of deep learning is leading the way of jointly modeling these two components to be complementary to each other. By considering such exciting technical trends, we believe that this paper is a valuable contribution to the community to provide a survey work by consolidating the recent developments with neural methods and thus facilitating further progress toward a more efficient speaker diarization.Comment: This article is a preprint version of the article published in Computer Speech & Language, Volume 72, March 2022, 10131
    corecore