192 research outputs found

    Brain MRT image super resolution using discrete cosine transform and convolutional neural network

    Get PDF
    High Resolution (HR) images have numerous applications, such as video conferencing, remote sensing, medical imaging, etc. Furthermore, a few challenges with the super resolution algorithms of magnetic resonance brain images are now obtainable, namely, low sensitivity, significant frequency noise as well as poor resolution. To fix these problems, a Convolutional Neural Network (CNN) based Discrete Cosine Transform (DCT) singular frame quality improvement method is described. There are two stages in this proposed method, involving training and testing. During the training stage, the HR, and Low Resolution (LR) pictures are employed as input, and they are preprocessed to create blocks of images. The histogram and DCT are used for extracting the features from the LR and HR blocks, and these extracted features are assigned with class id. The CNN, which extracts the features and allocates class id, receives its feature extractor as its final input. An LR input image is once more divided into [2 × 2] blocks during the testing stage, so each block histogram and DCT feature are estimated. Each feature vector is fed into the neural network as well as the results are contrasted with a set of feature vectors that have been recorded, in addition to the class id that has been allocated to a certain vector. In order to generate a Super resolution image with an LR image, a relevant HR block is then swapped out for this LR block. These results indicated that the initial dataset can achieve 22.4 and 19.5 Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) values while measuring the effectiveness of this proposed method using RMSE and PSNR. Then, the second dataset illustrates that the PSNR and RMSE values are 20.1 and 25.5. For the third dataset, the values are 45.7 and 12.3, respectively. However, the presented method works better than the neural method of Super Resolution Channel Spatial Modulation Network and resolution enhancement technique

    Real-time Ultrasound Signals Processing: Denoising and Super-resolution

    Get PDF
    Ultrasound acquisition is widespread in the biomedical field, due to its properties of low cost, portability, and non-invasiveness for the patient. The processing and analysis of US signals, such as images, 2D videos, and volumetric images, allows the physician to monitor the evolution of the patient's disease, and support diagnosis, and treatments (e.g., surgery). US images are affected by speckle noise, generated by the overlap of US waves. Furthermore, low-resolution images are acquired when a high acquisition frequency is applied to accurately characterise the behaviour of anatomical features that quickly change over time. Denoising and super-resolution of US signals are relevant to improve the visual evaluation of the physician and the performance and accuracy of processing methods, such as segmentation and classification. The main requirements for the processing and analysis of US signals are real-time execution, preservation of anatomical features, and reduction of artefacts. In this context, we present a novel framework for the real-time denoising of US 2D images based on deep learning and high-performance computing, which reduces noise while preserving anatomical features in real-time execution. We extend our framework to the denoise of arbitrary US signals, such as 2D videos and 3D images, and we apply denoising algorithms that account for spatio-temporal signal properties into an image-to-image deep learning model. As a building block of this framework, we propose a novel denoising method belonging to the class of low-rank approximations, which learns and predicts the optimal thresholds of the Singular Value Decomposition. While previous denoise work compromises the computational cost and effectiveness of the method, the proposed framework achieves the results of the best denoising algorithms in terms of noise removal, anatomical feature preservation, and geometric and texture properties conservation, in a real-time execution that respects industrial constraints. The framework reduces the artefacts (e.g., blurring) and preserves the spatio-temporal consistency among frames/slices; also, it is general to the denoising algorithm, anatomical district, and noise intensity. Then, we introduce a novel framework for the real-time reconstruction of the non-acquired scan lines through an interpolating method; a deep learning model improves the results of the interpolation to match the target image (i.e., the high-resolution image). We improve the accuracy of the prediction of the reconstructed lines through the design of the network architecture and the loss function. %The design of the deep learning architecture and the loss function allow the network to improve the accuracy of the prediction of the reconstructed lines. In the context of signal approximation, we introduce our kernel-based sampling method for the reconstruction of 2D and 3D signals defined on regular and irregular grids, with an application to US 2D and 3D images. Our method improves previous work in terms of sampling quality, approximation accuracy, and geometry reconstruction with a slightly higher computational cost. For both denoising and super-resolution, we evaluate the compliance with the real-time requirement of US applications in the medical domain and provide a quantitative evaluation of denoising and super-resolution methods on US and synthetic images. Finally, we discuss the role of denoising and super-resolution as pre-processing steps for segmentation and predictive analysis of breast pathologies

    Compressed Sensing in Resource-Constrained Environments: From Sensing Mechanism Design to Recovery Algorithms

    Get PDF
    Compressed Sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. It is promising that CS can be utilized in environments where the signal acquisition process is extremely difficult or costly, e.g., a resource-constrained environment like the smartphone platform, or a band-limited environment like visual sensor network (VSNs). There are several challenges to perform sensing due to the characteristic of these platforms, including, for example, needing active user involvement, computational and storage limitations and lower transmission capabilities. This dissertation focuses on the study of CS in resource-constrained environments. First, we try to solve the problem on how to design sensing mechanisms that could better adapt to the resource-limited smartphone platform. We propose the compressed phone sensing (CPS) framework where two challenging issues are studied, the energy drainage issue due to continuous sensing which may impede the normal functionality of the smartphones and the requirement of active user inputs for data collection that may place a high burden on the user. Second, we propose a CS reconstruction algorithm to be used in VSNs for recovery of frames/images. An efficient algorithm, NonLocal Douglas-Rachford (NLDR), is developed. NLDR takes advantage of self-similarity in images using nonlocal means (NL) filtering. We further formulate the nonlocal estimation as the low-rank matrix approximation problem and solve the constrained optimization problem using Douglas-Rachford splitting method. Third, we extend the NLDR algorithm to surveillance video processing in VSNs and propose recursive Low-rank and Sparse estimation through Douglas-Rachford splitting (rLSDR) method for recovery of the video frame into a low-rank background component and sparse component that corresponds to the moving object. The spatial and temporal low-rank features of the video frame, e.g., the nonlocal similar patches within the single video frame and the low-rank background component residing in multiple frames, are successfully exploited

    Volumetric MRI Reconstruction from 2D Slices in the Presence of Motion

    Get PDF
    Despite recent advances in acquisition techniques and reconstruction algorithms, magnetic resonance imaging (MRI) remains challenging in the presence of motion. To mitigate this, ultra-fast two-dimensional (2D) MRI sequences are often used in clinical practice to acquire thick, low-resolution (LR) 2D slices to reduce in-plane motion. The resulting stacks of thick 2D slices typically provide high-quality visualizations when viewed in the in-plane direction. However, the low spatial resolution in the through-plane direction in combination with motion commonly occurring between individual slice acquisitions gives rise to stacks with overall limited geometric integrity. In further consequence, an accurate and reliable diagnosis may be compromised when using such motion-corrupted, thick-slice MRI data. This thesis presents methods to volumetrically reconstruct geometrically consistent, high-resolution (HR) three-dimensional (3D) images from motion-corrupted, possibly sparse, low-resolution 2D MR slices. It focuses on volumetric reconstructions techniques using inverse problem formulations applicable to a broad field of clinical applications in which associated motion patterns are inherently different, but the use of thick-slice MR data is current clinical practice. In particular, volumetric reconstruction frameworks are developed based on slice-to-volume registration with inter-slice transformation regularization and robust, complete-outlier rejection for the reconstruction step that can either avoid or efficiently deal with potential slice-misregistrations. Additionally, this thesis describes efficient Forward-Backward Splitting schemes for image registration for any combination of differentiable (not necessarily convex) similarity measure and convex (not necessarily smooth) regularization with a tractable proximal operator. Experiments are performed on fetal and upper abdominal MRI, and on historical, printed brain MR films associated with a uniquely long-term study dating back to the 1980s. The results demonstrate the broad applicability of the presented frameworks to achieve robust reconstructions with the potential to improve disease diagnosis and patient management in clinical practice

    A Novel Hybrid CNN Denoising Technique (HDCNN) for Image Denoising with Improved Performance

    Get PDF
    Photo denoising has been tackled by deep convolutional neural networks (CNNs) with powerful learning capabilities. Unfortunately, some CNNs perform badly on complex displays because they only train one deep network for their image blurring models. We recommend a hybrid CNN denoising technique (HDCNN) to address this problem. An HDCNN consists of a dilated interfere with, a RepVGG block, an attribute sharpening interferes with, as well as one inversion. To gather more context data, DB incorporates a stretched convolution, data sequential normalization (BN), shared convergence, and the activating function called the ReLU. Convolution, BN, and reLU are combined in parallel by RVB to obtain complimentary width characteristics. The RVB's refining characteristics are used to refine FB, which is then utilized to collect more precise data. To create a crisp image, a single convolution works in conjunction with a residual learning process. These crucial elements enable the HDCNN to carry out visual denoising efficiently. The suggested HDCNN has a good denoising performance in open data sets, according to experiments

    Cross Dynamic Range And Cross Resolution Objective Image Quality Assessment With Applications

    Get PDF
    In recent years, image and video signals have become an indispensable part of human life. There has been an increasing demand for high quality image and video products and services. To monitor, maintain and enhance image and video quality objective image and video quality assessment tools play crucial roles in a wide range of applications throughout the field of image and video processing, including image and video acquisition, communication, interpolation, retrieval, and displaying. A number of objective image and video quality measures have been introduced in the last decades such as mean square error (MSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). However, they are not applicable when the dynamic range or spatial resolution of images being compared is different from that of the corresponding reference images. In this thesis, we aim to tackle these two main problems in the field of image quality assessment. Tone mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Most TMOs have been designed in the absence of a well-established and subject-validated image quality assessment (IQA) model, without which fair comparisons and further improvement are difficult. We propose an objective quality assessment algorithm for tone-mapped images using HDR images as references by combining 1) a multi-scale signal fidelity measure based on a modified structural similarity (SSIM) index; and 2) a naturalness measure based on intensity statistics of natural images. To evaluate the proposed Tone-Mapped image Quality Index (TMQI), its performance in several applications and optimization problems is provided. Specifically, the main component of TMQI known as structural fidelity is modified and adopted to enhance the visualization of HDR medical images on standard displays. Moreover, a substantially different approach to design TMOs is presented, where instead of using any pre-defined systematic computational structure (such as image transformation or contrast/edge enhancement) for tone-mapping, we navigate in the space of all LDR images, searching for the image that maximizes structural fidelity or TMQI. There has been an increasing number of image interpolation and image super-resolution (SR) algorithms proposed recently to create images with higher spatial resolution from low-resolution (LR) images. However, the evaluation of such SR and interpolation algorithms is cumbersome. Most existing image quality measures are not applicable because LR and resultant high resolution (HR) images have different spatial resolutions. We make one of the first attempts to develop objective quality assessment methods to compare LR and HR images. Our method adopts a framework based on natural scene statistics (NSS) where image quality degradation is gauged by the deviation of its statistical features from NSS models trained upon high quality natural images. In particular, we extract frequency energy falloff, dominant orientation and spatial continuity statistics from natural images and build statistical models to describe such statistics. These models are then used to measure statistical naturalness of interpolated images. We carried out subjective tests to validate our approach, which also demonstrates promising results. The performance of the proposed measure is further evaluated when applied to parameter tuning in image interpolation algorithms
    corecore