609,714 research outputs found

    Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression

    Full text link
    [EN] Purpose: The development of automatic and reliable algorithms for the detection and segmentation of the vertebrae are of great importance prior to any diagnostic task. However, an important problem found to accurately segment the vertebrae is the presence of the ribs in the thoracic region. To overcome this problem, a probabilistic atlas of the spine has been developed dealing with the proximity of other structures, with a special focus on ribs suppression. Methods: The data sets used consist of Computed Tomography images corresponding to 21 patients suffering from spinal metastases. Two methods have been combined to obtain the final result: firstly, an initial segmentation is performed using a fully automatic level-set method; secondly, to refine the initial segmentation, a 3D volume indicating the probability of each voxel of belonging to the spine has been developed. In this way, a probability map is generated and deformed to be adapted to each testing case. Results: To validate the improvement obtained after applying the atlas, the Dice coefficient (DSC), the Hausdorff distance (HD), and the mean surface-to-surface distance (MSD) were used. The results showed up an average of 10 mm of improvement accuracy in terms of HD, obtaining an overall final average of 15.51 2.74 mm. Also, a global value of 91.01 3.18% in terms of DSC and a MSD of 0.66 0.25 mm were obtained. The major improvement using the atlas was achieved in the thoracic region, as ribs were almost perfectly suppressed. Conclusion: The study demonstrated that the atlas is able to detect and appropriately eliminate the ribs while improving the segmentation accuracy.The authors thank the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under Grants TEC2012-33778 and BFU2015-64380-C2-2-R (D.M.) and DPI2013-4572-R (J.D., E.D.)Ruiz-España, S.; Domingo, J.; Díaz-Parra, A.; Dura, E.; D'ocon-Alcaniz, V.; Arana, E.; Moratal, D. (2017). Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression. Medical Physics. 44(9):4695-4707. https://doi.org/10.1002/mp.12431S46954707449Harris, R. I., & Macnab, I. (1954). STRUCTURAL CHANGES IN THE LUMBAR INTERVERTEBRAL DISCS. The Journal of Bone and Joint Surgery. British volume, 36-B(2), 304-322. doi:10.1302/0301-620x.36b2.304Oliveira, M. F. de, Rotta, J. M., & Botelho, R. V. (2015). Survival analysis in patients with metastatic spinal disease: the influence of surgery, histology, clinical and neurologic status. Arquivos de Neuro-Psiquiatria, 73(4), 330-335. doi:10.1590/0004-282x20150003Chou, R. (2011). Diagnostic Imaging for Low Back Pain: Advice for High-Value Health Care From the American College of Physicians. Annals of Internal Medicine, 154(3), 181. doi:10.7326/0003-4819-154-3-201102010-00008Brayda-Bruno, M., Tibiletti, M., Ito, K., Fairbank, J., Galbusera, F., Zerbi, A., … Sivan, S. S. (2013). Advances in the diagnosis of degenerated lumbar discs and their possible clinical application. European Spine Journal, 23(S3), 315-323. doi:10.1007/s00586-013-2960-9Quattrocchi, C. C., Santini, D., Dell’Aia, P., Piciucchi, S., Leoncini, E., Vincenzi, B., … Zobel, B. B. (2007). A prospective analysis of CT density measurements of bone metastases after treatment with zoledronic acid. Skeletal Radiology, 36(12), 1121-1127. doi:10.1007/s00256-007-0388-1Doi, K. (2007). Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics, 31(4-5), 198-211. doi:10.1016/j.compmedimag.2007.02.002Ruiz-España, S., Arana, E., & Moratal, D. (2015). Semiautomatic computer-aided classification of degenerative lumbar spine disease in magnetic resonance imaging. Computers in Biology and Medicine, 62, 196-205. doi:10.1016/j.compbiomed.2015.04.028Alomari, R. S., Ghosh, S., Koh, J., & Chaudhary, V. (2014). Vertebral Column Localization, Labeling, and Segmentation. Lecture Notes in Computational Vision and Biomechanics, 193-229. doi:10.1007/978-3-319-12508-4_7Hamarneh, G., & Li, X. (2009). Watershed segmentation using prior shape and appearance knowledge. Image and Vision Computing, 27(1-2), 59-68. doi:10.1016/j.imavis.2006.10.009Ghebreab, S., & Smeulders, A. W. (2004). Combining Strings and Necklaces for Interactive Three-Dimensional Segmentation of Spinal Images Using an Integral Deformable Spine Model. IEEE Transactions on Biomedical Engineering, 51(10), 1821-1829. doi:10.1109/tbme.2004.831540Mastmeyer, A., Engelke, K., Fuchs, C., & Kalender, W. A. (2006). A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Medical Image Analysis, 10(4), 560-577. doi:10.1016/j.media.2006.05.005Rasoulian, A., Rohling, R., & Abolmaesumi, P. (2013). Lumbar Spine Segmentation Using a Statistical Multi-Vertebrae Anatomical Shape+Pose Model. IEEE Transactions on Medical Imaging, 32(10), 1890-1900. doi:10.1109/tmi.2013.2268424Ma, J., & Lu, L. (2013). Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Computer Vision and Image Understanding, 117(9), 1072-1083. doi:10.1016/j.cviu.2012.11.016Kim, Y., & Kim, D. (2009). A fully automatic vertebra segmentation method using 3D deformable fences. Computerized Medical Imaging and Graphics, 33(5), 343-352. doi:10.1016/j.compmedimag.2009.02.006Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., & Lorenz, C. (2009). Automated model-based vertebra detection, identification, and segmentation in CT images. Medical Image Analysis, 13(3), 471-482. doi:10.1016/j.media.2009.02.004Štern, D., Likar, B., Pernuš, F., & Vrtovec, T. (2011). Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Physics in Medicine and Biology, 56(23), 7505-7522. doi:10.1088/0031-9155/56/23/011Korez, R., Ibragimov, B., Likar, B., Pernus, F., & Vrtovec, T. (2015). A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation. IEEE Transactions on Medical Imaging, 34(8), 1649-1662. doi:10.1109/tmi.2015.2389334Castro-Mateos, I., Pozo, J. M., Pereanez, M., Lekadir, K., Lazary, A., & Frangi, A. F. (2015). Statistical Interspace Models (SIMs): Application to Robust 3D Spine Segmentation. IEEE Transactions on Medical Imaging, 34(8), 1663-1675. doi:10.1109/tmi.2015.2443912Pereanez, M., Lekadir, K., Castro-Mateos, I., Pozo, J. M., Lazary, A., & Frangi, A. F. (2015). Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models. IEEE Transactions on Medical Imaging, 34(8), 1627-1639. doi:10.1109/tmi.2015.2396774Michael Kelm, B., Wels, M., Kevin Zhou, S., Seifert, S., Suehling, M., Zheng, Y., & Comaniciu, D. (2013). Spine detection in CT and MR using iterated marginal space learning. Medical Image Analysis, 17(8), 1283-1292. doi:10.1016/j.media.2012.09.007Yan Kang, Engelke, K., & Kalender, W. A. (2003). A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Transactions on Medical Imaging, 22(5), 586-598. doi:10.1109/tmi.2003.812265Huang, J., Jian, F., Wu, H., & Li, H. (2013). An improved level set method for vertebra CT image segmentation. BioMedical Engineering OnLine, 12(1), 48. doi:10.1186/1475-925x-12-48Lim, P. H., Bagci, U., & Bai, L. (2013). Introducing Willmore Flow Into Level Set Segmentation of Spinal Vertebrae. IEEE Transactions on Biomedical Engineering, 60(1), 115-122. doi:10.1109/tbme.2012.2225833Forsberg, D., Lundström, C., Andersson, M., & Knutsson, H. (2013). Model-based registration for assessment of spinal deformities in idiopathic scoliosis. Physics in Medicine and Biology, 59(2), 311-326. doi:10.1088/0031-9155/59/2/311Yao, J., Burns, J. E., Forsberg, D., Seitel, A., Rasoulian, A., Abolmaesumi, P., … Li, S. (2016). A multi-center milestone study of clinical vertebral CT segmentation. Computerized Medical Imaging and Graphics, 49, 16-28. doi:10.1016/j.compmedimag.2015.12.006Shi, C., Wang, J., & Cheng, Y. (2015). Sparse Representation-Based Deformation Model for Atlas-Based Segmentation of Liver CT Images. Image and Graphics, 410-419. doi:10.1007/978-3-319-21969-1_36Domingo, J., Dura, E., Ayala, G., & Ruiz-España, S. (2015). Means of 2D and 3D Shapes and Their Application in Anatomical Atlas Building. Lecture Notes in Computer Science, 522-533. doi:10.1007/978-3-319-23192-1_44Hyunjin Park, Bland, P. H., & Meyer, C. R. (2003). Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Transactions on Medical Imaging, 22(4), 483-492. doi:10.1109/tmi.2003.809139Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., & Bach Cuadra, M. (2011). A review of atlas-based segmentation for magnetic resonance brain images. Computer Methods and Programs in Biomedicine, 104(3), e158-e177. doi:10.1016/j.cmpb.2011.07.015Fortunati, V., Verhaart, R. F., van der Lijn, F., Niessen, W. J., Veenland, J. F., Paulides, M. M., & van Walsum, T. (2013). Tissue segmentation of head and neck CT images for treatment planning: A multiatlas approach combined with intensity modeling. Medical Physics, 40(7), 071905. doi:10.1118/1.4810971Zhuang, X., Bai, W., Song, J., Zhan, S., Qian, X., Shi, W., … Rueckert, D. (2015). Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. Medical Physics, 42(7), 3822-3833. doi:10.1118/1.4921366Zhou, J., Yan, Z., Lasio, G., Huang, J., Zhang, B., Sharma, N., … D’Souza, W. (2015). Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT. Computerized Medical Imaging and Graphics, 46, 47-55. doi:10.1016/j.compmedimag.2015.07.003Linguraru, M. G., Sandberg, J. K., Li, Z., Shah, F., & Summers, R. M. (2010). Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Medical Physics, 37(2), 771-783. doi:10.1118/1.3284530Xu, Y., Xu, C., Kuang, X., Wang, H., Chang, E. I.-C., Huang, W., & Fan, Y. (2016). 3D-SIFT-Flow for atlas-based CT liver image segmentation. Medical Physics, 43(5), 2229-2241. doi:10.1118/1.4945021Michopoulou, S. K., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G., & Todd-Pokropek, A. (2009). Atlas-Based Segmentation of Degenerated Lumbar Intervertebral Discs From MR Images of the Spine. IEEE Transactions on Biomedical Engineering, 56(9), 2225-2231. doi:10.1109/tbme.2009.2019765Taso, M., Le Troter, A., Sdika, M., Ranjeva, J.-P., Guye, M., Bernard, M., & Callot, V. (2013). Construction of an in vivo human spinal cord atlas based on high-resolution MR images at cervical and thoracic levels: preliminary results. Magnetic Resonance Materials in Physics, Biology and Medicine, 27(3), 257-267. doi:10.1007/s10334-013-0403-6Lévy, S., Benhamou, M., Naaman, C., Rainville, P., Callot, V., & Cohen-Adad, J. (2015). White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage, 119, 262-271. doi:10.1016/j.neuroimage.2015.06.040Hardisty, M., Gordon, L., Agarwal, P., Skrinskas, T., & Whyne, C. (2007). Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method. Medical Physics, 34(8), 3127-3134. doi:10.1118/1.2746498Forsberg, D. (2015). Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data. Lecture Notes in Computational Vision and Biomechanics, 49-59. doi:10.1007/978-3-319-14148-0_5Ibañez MV Schroeder W Cates L Insight software Consortium. The ITK Software Guide 2016 http://www.itk.org/ItkSoftwareGuide.pdfLoader C R package: Local regression, likelihood and density estimation. CRAN repository 2013 2016 http://cran.r-project.org/web/packages/locfitPARK, H., HERO, A., BLAND, P., KESSLER, M., SEO, J., & MEYER, C. (2010). Construction of Abdominal Probabilistic Atlases and Their Value in Segmentation of Normal Organs in Abdominal CT Scans. IEICE Transactions on Information and Systems, E93-D(8), 2291-2301. doi:10.1587/transinf.e93.d.2291Pohl, K. M., Fisher, J., Bouix, S., Shenton, M., McCarley, R. W., Grimson, W. E. L., … Wells, W. M. (2007). Using the logarithm of odds to define a vector space on probabilistic atlases. Medical Image Analysis, 11(5), 465-477. doi:10.1016/j.media.2007.06.003Baddeley, A., & Molchanov, I. (1998). Journal of Mathematical Imaging and Vision, 8(1), 79-92. doi:10.1023/a:1008214317492De Bruijne, M., van Ginneken, B., Viergever, M. A., & Niessen, W. J. (2003). Adapting Active Shape Models for 3D Segmentation of Tubular Structures in Medical Images. Information Processing in Medical Imaging, 136-147. doi:10.1007/978-3-540-45087-0_12Zhang, K., Zhang, L., Song, H., & Zhou, W. (2010). Active contours with selective local or global segmentation: A new formulation and level set method. Image and Vision Computing, 28(4), 668-676. doi:10.1016/j.imavis.2009.10.009Kalpathy-Cramer, J., Awan, M., Bedrick, S., Rasch, C. R. N., Rosenthal, D. I., & Fuller, C. D. (2013). Development of a Software for Quantitative Evaluation Radiotherapy Target and Organ-at-Risk Segmentation Comparison. Journal of Digital Imaging, 27(1), 108-119. doi:10.1007/s10278-013-9633-4Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850-863. doi:10.1109/34.232073Aspert, N., Santa-Cruz, D., & Ebrahimi, T. (s. f.). MESH: measuring errors between surfaces using the Hausdorff distance. Proceedings. IEEE International Conference on Multimedia and Expo. doi:10.1109/icme.2002.103587

    An Unsupervised Learning Model for Deformable Medical Image Registration

    Full text link
    We present a fast learning-based algorithm for deformable, pairwise 3D medical image registration. Current registration methods optimize an objective function independently for each pair of images, which can be time-consuming for large data. We define registration as a parametric function, and optimize its parameters given a set of images from a collection of interest. Given a new pair of scans, we can quickly compute a registration field by directly evaluating the function using the learned parameters. We model this function using a convolutional neural network (CNN), and use a spatial transform layer to reconstruct one image from another while imposing smoothness constraints on the registration field. The proposed method does not require supervised information such as ground truth registration fields or anatomical landmarks. We demonstrate registration accuracy comparable to state-of-the-art 3D image registration, while operating orders of magnitude faster in practice. Our method promises to significantly speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is available at https://github.com/balakg/voxelmorph .Comment: 9 pages, in CVPR 201

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations

    MedGAN: Medical Image Translation using GANs

    Full text link
    Image-to-image translation is considered a new frontier in the field of medical image analysis, with numerous potential applications. However, a large portion of recent approaches offers individualized solutions based on specialized task-specific architectures or require refinement through non-end-to-end training. In this paper, we propose a new framework, named MedGAN, for medical image-to-image translation which operates on the image level in an end-to-end manner. MedGAN builds upon recent advances in the field of generative adversarial networks (GANs) by merging the adversarial framework with a new combination of non-adversarial losses. We utilize a discriminator network as a trainable feature extractor which penalizes the discrepancy between the translated medical images and the desired modalities. Moreover, style-transfer losses are utilized to match the textures and fine-structures of the desired target images to the translated images. Additionally, we present a new generator architecture, titled CasNet, which enhances the sharpness of the translated medical outputs through progressive refinement via encoder-decoder pairs. Without any application-specific modifications, we apply MedGAN on three different tasks: PET-CT translation, correction of MR motion artefacts and PET image denoising. Perceptual analysis by radiologists and quantitative evaluations illustrate that the MedGAN outperforms other existing translation approaches.Comment: 16 pages, 8 figure

    Artificial neural network-statistical approach for PET volume analysis and classification

    Get PDF
    Copyright © 2012 The Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET data has shown promising results and can successfully classify and quantify malignant lesions.This study was supported by the Swiss National Science Foundation under Grant SNSF 31003A-125246, Geneva Cancer League, and the Indo Swiss Joint Research Programme ISJRP 138866. This article is made available through the Brunel Open Access Publishing Fund
    corecore