97,562 research outputs found

    CAMMD: Context Aware Mobile Medical Devices

    Get PDF
    Telemedicine applications on a medical practitioners mobile device should be context-aware. This can vastly improve the effectiveness of mobile applications and is a step towards realising the vision of a ubiquitous telemedicine environment. The nomadic nature of a medical practitioner emphasises location, activity and time as key context-aware elements. An intelligent middleware is needed to effectively interpret and exploit these contextual elements. This paper proposes an agent-based architectural solution called Context-Aware Mobile Medical Devices (CAMMD). This framework can proactively communicate patient records to a portable device based upon the active context of its medical practitioner. An expert system is utilised to cross-reference the context-aware data of location and time against a practitioners work schedule. This proactive distribution of medical data enhances the usability and portability of mobile medical devices. The proposed methodology alleviates constraints on memory storage and enhances user interaction with the handheld device. The framework also improves utilisation of network bandwidth resources. An experimental prototype is presented highlighting the potential of this approach

    Rapid fabrication of annuloplasty rings by electron beam melting

    Get PDF
    Electron Beam Melting (EBM) is an Additive Manufacturing (AM) technology capable of producing intricate parts by melting powder metal with the aid of an electron beam gun. EBM has facilitated the production of standard and customisable implants. Customizable implants such as orthopaedic implants, cranial implants and dental implants have already been developed and implanted successfully after being fabricated by AM technology. Other medical devices can also benefit from the possibilities offered by AM. An example of such a medical device would be the annuloplasty ring. Standard annuloplasty rings are implanted whenever a patient is diagnosed with mitral valve regurgitation. This problem arises when the mitral valve does not close properly, causing back leakage through the closed valve resulting in blood flowing to the atrium instead of the aorta during systole. The latest designs of annuloplasty rings allow restoration of the mitral annulus configuration to a saddle-shaped shape.peer-reviewe

    3D printing of PEEK-based medical devices

    Get PDF
    open access articlePolyether-ether-ketone (PEEK) is an excellent thermoplastic alternative to metallic biomaterials which is used for loadbearing applications due to its high strength and stiffness, and biocompatibility with no cytotoxic effects. However, a potential clinical concern is that PEEK alone is not bioactive enough, and thus has limited fixation to bone. To overcome this problem, bioactive materials and/or porosity are incorporated into PEEK medical devices. The latest developments in these two strategies are presented. in this paper. Bioactive PEEK/hydroxyapatite (HA) prepared by integration of 3D printing and compression molding is presented in this paper. In addition, nozzle and build plate temperatures for 3D printing of porous PEEK were optimized using genetic algorithm (GA) to achieve the highest mechanical strength for load bearing applications such as spinal fusion cages

    Considerations for the use of medical devices in dermatology.

    Get PDF
    This manuscript addresses the significant considerations concerning the development and use of medical devices in dermatology. With the rapidly growing demand and booming market for medical devices, especially lasers, it is crucial that dermatologists become familiar with the nuances associated with supporting clinical studies, consumer-driven marketing strategies, and the complex relationships that exist between physicians, industry, and consumers. An examination of these relationships includes an overview of the potential biases pertaining to advisory panels and treating clinicians. The aim of this paper is to serve as an introduction to the background of medical devices and to offer dermatologists important information on what should be considered before recommending treatment

    Eliciting usage contexts of safety-critical medical devices

    Get PDF
    This position paper outlines our approach to improve the usage choice of suitable devices in different health care environments (contexts). Safety-critical medical devices are presumed to have undergone a thorough (user-centred) design process to optimize the device for the intended purpose, user group and environment. However, in real-life health care scenarios, actual usage may not reflect the original design parameters. We suggest the identification of further usage contexts for safety-critical medical devices through ethnographic and other studies, to assist better modelling of the challenges of different usage environments. In combination with system and interaction models, these context models can then be used for decision-support in choosing medical devices that are suitable for the intended environment

    Development of dual anti-biofilm and anti-bacterial medical devices

    Get PDF
    The rising occurrence of antimicrobial resistance demands new strategies for delivering antibiotics to ensure their effective use. In this study, a multi-functional strategy to address medical device associated infections is explored whereby an anti-attachment and an antibacterial mechanism have been combined. Silicone catheters impregnated with multiple antibiotics are coated with polyacrylate coatings previously shown to reduce bacterial attachment and biofilm formation. Antibiotics are delivered through the applied coating and the delivery rate depends on the coating thickness and the calculated log P. Coated devices achieve a zone of inhibition and TK100 to Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus similar to those of uncoated devices, whilst maintaining anti-attachment properties. No adverse immunological responses of the coatings were observed. The multi-functional nature of the device developed in the study represents an important approach to combatting medical device associated infections

    Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implants

    Get PDF
    Long-term packaging of miniaturized, flexible implantable medical devices is essential for the next generation of medical devices. Polymer materials that are biocompatible and flexible have attracted extensive interest for the packaging of implantable medical devices, however realizing these devices with long-term hermeticity up to several years remains a great challenge. Here, polyimide (PI) based hermetic encapsulation was greatly improved by atomic layer deposition (ALD) of a nanoscale-thin, biocompatible sandwich stack of HfO2/Al2O3/HfO2 (ALD-3) between two polyimide layers. A thin copper film covered with a PI/ALD-3/PI barrier maintained excellent electrochemical performance over 1028 days (2.8 years) during acceleration tests at 60 °C in phosphate buffered saline solution (PBS). This stability is equivalent to approximately 14 years at 37 °C. The coatings were monitored in situ through electrochemical impedance spectroscopy (EIS), were inspected by microscope, and were further analyzed using equivalent circuit modeling. The failure mode of ALD Al2O3, ALD-3, and PI soaking in PBS is discussed. Encapsulation using ultrathin ALD-3 combined with PI for the packaging of implantable medical devices is robust at the acceleration temperature condition for more than 2.8 years, showing that it has great potential as reliable packaging for long-term implantable devices
    corecore