986,755 research outputs found

    Designing sustainable medical devices

    Get PDF
    Stakeholders in the medical device manufacturing industry are becoming more concerned about the environmental impact of their products and processes. The consumers are also becoming more aware of the negative impact that manufacturers can have on the environment. Government initiatives continue to increase environmental awareness through the development of new policy and legislation, encouraging industry to become more accountable for the environmental impact of their products and operations. The ISO 14001 standard, Environmental Management Systems-Requirements with Guidance for Use, sets guidelines to enable businesses to recognize the environmental effects of their products and processes. Departments can use the tool to set targets to lower the environmental impact and identify areas of high environmental concern when designing, purchasing, and marketing products. Research in these areas will be used to develop the environmental scoring tool to aid in the design of future sustainable medical devices

    CAMMD: Context Aware Mobile Medical Devices

    Get PDF
    Telemedicine applications on a medical practitioners mobile device should be context-aware. This can vastly improve the effectiveness of mobile applications and is a step towards realising the vision of a ubiquitous telemedicine environment. The nomadic nature of a medical practitioner emphasises location, activity and time as key context-aware elements. An intelligent middleware is needed to effectively interpret and exploit these contextual elements. This paper proposes an agent-based architectural solution called Context-Aware Mobile Medical Devices (CAMMD). This framework can proactively communicate patient records to a portable device based upon the active context of its medical practitioner. An expert system is utilised to cross-reference the context-aware data of location and time against a practitioners work schedule. This proactive distribution of medical data enhances the usability and portability of mobile medical devices. The proposed methodology alleviates constraints on memory storage and enhances user interaction with the handheld device. The framework also improves utilisation of network bandwidth resources. An experimental prototype is presented highlighting the potential of this approach

    Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implants

    Get PDF
    Long-term packaging of miniaturized, flexible implantable medical devices is essential for the next generation of medical devices. Polymer materials that are biocompatible and flexible have attracted extensive interest for the packaging of implantable medical devices, however realizing these devices with long-term hermeticity up to several years remains a great challenge. Here, polyimide (PI) based hermetic encapsulation was greatly improved by atomic layer deposition (ALD) of a nanoscale-thin, biocompatible sandwich stack of HfO2/Al2O3/HfO2 (ALD-3) between two polyimide layers. A thin copper film covered with a PI/ALD-3/PI barrier maintained excellent electrochemical performance over 1028 days (2.8 years) during acceleration tests at 60 °C in phosphate buffered saline solution (PBS). This stability is equivalent to approximately 14 years at 37 °C. The coatings were monitored in situ through electrochemical impedance spectroscopy (EIS), were inspected by microscope, and were further analyzed using equivalent circuit modeling. The failure mode of ALD Al2O3, ALD-3, and PI soaking in PBS is discussed. Encapsulation using ultrathin ALD-3 combined with PI for the packaging of implantable medical devices is robust at the acceleration temperature condition for more than 2.8 years, showing that it has great potential as reliable packaging for long-term implantable devices

    Rapid fabrication of annuloplasty rings by electron beam melting

    Get PDF
    Electron Beam Melting (EBM) is an Additive Manufacturing (AM) technology capable of producing intricate parts by melting powder metal with the aid of an electron beam gun. EBM has facilitated the production of standard and customisable implants. Customizable implants such as orthopaedic implants, cranial implants and dental implants have already been developed and implanted successfully after being fabricated by AM technology. Other medical devices can also benefit from the possibilities offered by AM. An example of such a medical device would be the annuloplasty ring. Standard annuloplasty rings are implanted whenever a patient is diagnosed with mitral valve regurgitation. This problem arises when the mitral valve does not close properly, causing back leakage through the closed valve resulting in blood flowing to the atrium instead of the aorta during systole. The latest designs of annuloplasty rings allow restoration of the mitral annulus configuration to a saddle-shaped shape.peer-reviewe

    Medical Benefits from Space Research

    Get PDF
    Medical benefits resulting from utilization of devices and techniques of space research within NASA progra

    "Regulating Healthcare Technologies and Medical Supplies: A Comparative Overview"

    Get PDF
    A complex relationship exists among EU regulations, current national practices and rules, institutional capacities to implement regulatory adjustments and the legacy of past health and regulatory policy and traditions. However, there is little empirical information on medical devices policy, the medical devices industry, and the assurance of medical device safety and usage. Drawing on a review of the secondary literature and on-going field work, the evidence suggests that the current mix of statecentric and self-regulatory traditions will be as important in determining the implementation and final outcomes of EU-rules as the new rules themselves. EU directives redesign rules, but they do not necessarily lead to institutional change, create institutional capacities, or alter old practices in the short term. Neither EU directives nor national regulatory adjustments determine the "man-machine/skill-experience" interface which is shaped and influenced by local medical traditions and the acceptance of these traditions by local publics
    corecore