124 research outputs found

    An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization

    Full text link
    In this paper we develop an axiomatic setup for algorithmic homological algebra of Abelian categories. This is done by exhibiting all existential quantifiers entering the definition of an Abelian category, which for the sake of computability need to be turned into constructive ones. We do this explicitly for the often-studied example Abelian category of finitely presented modules over a so-called computable ring RR, i.e., a ring with an explicit algorithm to solve one-sided (in)homogeneous linear systems over RR. For a finitely generated maximal ideal m\mathfrak{m} in a commutative ring RR we show how solving (in)homogeneous linear systems over RmR_{\mathfrak{m}} can be reduced to solving associated systems over RR. Hence, the computability of RR implies that of RmR_{\mathfrak{m}}. As a corollary we obtain the computability of the category of finitely presented RmR_{\mathfrak{m}}-modules as an Abelian category, without the need of a Mora-like algorithm. The reduction also yields, as a by-product, a complexity estimation for the ideal membership problem over local polynomial rings. Finally, in the case of localized polynomial rings we demonstrate the computational advantage of our homologically motivated alternative approach in comparison to an existing implementation of Mora's algorithm.Comment: Fixed a typo in the proof of Lemma 4.3 spotted by Sebastian Posu

    Computing Persistent Homology within Coq/SSReflect

    Full text link
    Persistent homology is one of the most active branches of Computational Algebraic Topology with applications in several contexts such as optical character recognition or analysis of point cloud data. In this paper, we report on the formal development of certified programs to compute persistent Betti numbers, an instrumental tool of persistent homology, using the Coq proof assistant together with the SSReflect extension. To this aim it has been necessary to formalize the underlying mathematical theory of these algorithms. This is another example showing that interactive theorem provers have reached a point where they are mature enough to tackle the formalization of nontrivial mathematical theories

    Certified Symbolic Manipulation: Bivariate Simplicial Polynomials

    Get PDF
    Certified symbolic manipulation is an emerging new field where programs are accompanied by certificates that, suitably interpreted, ensure the correctness of the algorithms. In this paper, we focus on algebraic algorithms implemented in the proof assistant ACL2, which allows us to verify correctness in the same programming environment. The case study is that of bivariate simplicial polynomials, a data structure used to help the proof of properties in Simplicial Topology. Simplicial polynomials can be computationally interpreted in two ways. As symbolic expressions, they can be handled algorithmically, increasing the automation in ACL2 proofs. As representations of functional operators, they help proving properties of categorical morphisms. As an application of this second view, we present the definition in ACL2 of some morphisms involved in the Eilenberg-Zilber reduction, a central part of the Kenzo computer algebra system. We have proved the ACL2 implementations are correct and tested that they get the same results as Kenzo does.Ministerio de Ciencia e Innovación MTM2009-13842Unión Europea nr. 243847 (ForMath

    Verifying the bridge between simplicial topology and algebra: the Eilenberg–Zilber algorithm

    Get PDF
    The Eilenberg–Zilber algorithm is one of the central components of the computer algebra system called Kenzo, devoted to computing in Algebraic Topology. In this article we report on a complete formal proof of the underlying Eilenberg–Zilber theorem, using the ACL2 theorem prover. As our formalization is executable, we are able to compare the results of the certified programme with those of Kenzo on some universal examples. Since the results coincide, the reliability of Kenzo is reinforced. This is a new step in our long-term project towards certified programming for Algebraic Topology.Ministerio de Ciencia e Innovación MTM2009-13842European Union’s 7th Framework Programme [243847] (ForMath)

    Formalization of a normalization theorem in simplicial topology

    Get PDF
    In this paper we present a complete formalization of the Normalization Theorem, a result in Algebraic Simplicial Topology stating that there exists a homotopy equivalence between the chain complex of a simplicial set, and a smaller chain complex for the same simplicial set, called the normalized chain complex. Even if the Normalization Theorem is usually stated as a higher-order result (with a Category Theory flavor) we manage to give a first-order proof of it. To this aim it is instrumental the introduction of an algebraic data structure called simplicial polynomial. As a demonstration of the validity of our techniques we developed a formal proof in the ACL2 theorem prover.Ministerio de Ciencia e Innovación MTM2009-13842European Commission FP7 STREP project ForMath n. 24384

    Computer theorem proving in math

    Get PDF
    We give an overview of issues surrounding computer-verified theorem proving in the standard pure-mathematical context. This is based on my talk at the PQR conference (Brussels, June 2003)
    • …
    corecore