37 research outputs found

    Modeling Collaboration in Academia: A Game Theoretic Approach

    Full text link
    In this work, we aim to understand the mechanisms driving academic collaboration. We begin by building a model for how researchers split their effort between multiple papers, and how collaboration affects the number of citations a paper receives, supported by observations from a large real-world publication and citation dataset, which we call the h-Reinvestment model. Using tools from the field of Game Theory, we study researchers' collaborative behavior over time under this model, with the premise that each researcher wants to maximize his or her academic success. We find analytically that there is a strong incentive to collaborate rather than work in isolation, and that studying collaborative behavior through a game-theoretic lens is a promising approach to help us better understand the nature and dynamics of academic collaboration.Comment: Presented at the 1st WWW Workshop on Big Scholarly Data (2014). 6 pages, 5 figure

    Will This Paper Increase Your h-index? Scientific Impact Prediction

    Full text link
    Scientific impact plays a central role in the evaluation of the output of scholars, departments, and institutions. A widely used measure of scientific impact is citations, with a growing body of literature focused on predicting the number of citations obtained by any given publication. The effectiveness of such predictions, however, is fundamentally limited by the power-law distribution of citations, whereby publications with few citations are extremely common and publications with many citations are relatively rare. Given this limitation, in this work we instead address a related question asked by many academic researchers in the course of writing a paper, namely: "Will this paper increase my h-index?" Using a real academic dataset with over 1.7 million authors, 2 million papers, and 8 million citation relationships from the premier online academic service ArnetMiner, we formalize a novel scientific impact prediction problem to examine several factors that can drive a paper to increase the primary author's h-index. We find that the researcher's authority on the publication topic and the venue in which the paper is published are crucial factors to the increase of the primary author's h-index, while the topic popularity and the co-authors' h-indices are of surprisingly little relevance. By leveraging relevant factors, we find a greater than 87.5% potential predictability for whether a paper will contribute to an author's h-index within five years. As a further experiment, we generate a self-prediction for this paper, estimating that there is a 76% probability that it will contribute to the h-index of the co-author with the highest current h-index in five years. We conclude that our findings on the quantification of scientific impact can help researchers to expand their influence and more effectively leverage their position of "standing on the shoulders of giants."Comment: Proc. of the 8th ACM International Conference on Web Search and Data Mining (WSDM'15

    Incentives and Efficiency in Uncertain Collaborative Environments

    Full text link
    We consider collaborative systems where users make contributions across multiple available projects and are rewarded for their contributions in individual projects according to a local sharing of the value produced. This serves as a model of online social computing systems such as online Q&A forums and of credit sharing in scientific co-authorship settings. We show that the maximum feasible produced value can be well approximated by simple local sharing rules where users are approximately rewarded in proportion to their marginal contributions and that this holds even under incomplete information about the player's abilities and effort constraints. For natural instances we show almost 95% optimality at equilibrium. When players incur a cost for their effort, we identify a threshold phenomenon: the efficiency is a constant fraction of the optimal when the cost is strictly convex and decreases with the number of players if the cost is linear

    Project Games

    Get PDF
    International audienceWe consider a strategic game called project game where each agent has to choose a project among his own list of available projects. The model includes positive weights expressing the capacity of a given agent to contribute to a given project The realization of a project produces some reward that has to be allocated to the agents. The reward of a realized project is fully allocated to its contributors, according to a simple proportional rule. Existence and computational complexity of pure Nash equilibria is addressed and their efficiency is investigated according to both the utilitarian and the egalitarian social function

    User Satisfaction in Competitive Sponsored Search

    Full text link
    We present a model of competition between web search algorithms, and study the impact of such competition on user welfare. In our model, search providers compete for customers by strategically selecting which search results to display in response to user queries. Customers, in turn, have private preferences over search results and will tend to use search engines that are more likely to display pages satisfying their demands. Our main question is whether competition between search engines increases the overall welfare of the users (i.e., the likelihood that a user finds a page of interest). When search engines derive utility only from customers to whom they show relevant results, we show that they differentiate their results, and every equilibrium of the resulting game achieves at least half of the welfare that could be obtained by a social planner. This bound also applies whenever the likelihood of selecting a given engine is a convex function of the probability that a user's demand will be satisfied, which includes natural Markovian models of user behavior. On the other hand, when search engines derive utility from all customers (independent of search result relevance) and the customer demand functions are not convex, there are instances in which the (unique) equilibrium involves no differentiation between engines and a high degree of randomness in search results. This can degrade social welfare by a factor of the square root of N relative to the social optimum, where N is the number of webpages. These bad equilibria persist even when search engines can extract only small (but non-zero) expected revenue from dissatisfied users, and much higher revenue from satisfied ones
    corecore