8 research outputs found

    Faster linearizability checking via PP-compositionality

    Full text link
    Linearizability is a well-established consistency and correctness criterion for concurrent data types. An important feature of linearizability is Herlihy and Wing's locality principle, which says that a concurrent system is linearizable if and only if all of its constituent parts (so-called objects) are linearizable. This paper presents PP-compositionality, which generalizes the idea behind the locality principle to operations on the same concurrent data type. We implement PP-compositionality in a novel linearizability checker. Our experiments with over nine implementations of concurrent sets, including Intel's TBB library, show that our linearizability checker is one order of magnitude faster and/or more space efficient than the state-of-the-art algorithm.Comment: 15 pages, 2 figure

    Mechanically verified proof obligations for linearizability

    No full text
    Concurrent objects are inherently complex to verify. In the late 80s and early 90s, Herlihy and Wing proposed linearizability as a correctness condition for concurrent objects, which, once proven, allows us to reason about concurrent objects using pre- and postconditions only. A concurrent object is linearizable if all of its operations appear to take effect instantaneously some time between their invocation and return. In this article we define simulation-based proof conditions for linearizability and apply them to two concurrent implementations, a lock-free stack and a set with lock-coupling. Similar to other approaches, we employ a theorem prover (here, KIV) to mechanize our proofs. Contrary to other approaches, we also use the prover to mechanically check that our proof obligations actually guarantee linearizability. This check employs the original ideas of Herlihy and Wing of verifying linearizability via possibilities . </jats:p
    corecore