2 research outputs found

    Алгоритм опрСдСлСния Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ манипулятора Π·ΠΌΠ΅Π΅Π²ΠΈΠ΄Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π»ΠΈΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π·Π²Π΅Π½Π° ΠΏΠΎ Π½Π°Ρ€Π°Ρ‰ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ

    Get PDF
    In the paper, we have formulated the invariant description form for geometry of a spatial, kinematically redundant manipulator with the orthogonal non-coplanar axes of rotation of the joints. We have obtained the explicit equations for determining the angular coordinates from the condition that points of joints belong to the smooth parametrically given curve. Inequality constraints on the relative position of neighboring parts of the manipulator have been formulated. We have proposed an algorithm for solving equations and the method of planning changes for hinge coordinates for the movement of joints points along the spatial curve that is formed by incremental addition of target points for the head link positions of the manipulator. The method has been applied for planning movements of a hyper-redundant manipulator with a fixed root link and a snakelike robot when moving along the path built on the basis of current and forecasted positions of joints in the Cartesian space.Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ инвариантная ΠΊ систСмС Π²Π½Π΅ΡˆΠ½ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ„ΠΎΡ€ΠΌΠ° задания Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ пространствСнного кинСматичСски ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ манипулятора с ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π½Π΅ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹ΠΌΠΈ осями ΡˆΠ°Ρ€Π½ΠΈΡ€ΠΎΠ² вращСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ аналитичСскиС выраТСния для опрСдСлСния ΡƒΠ³Π»ΠΎΠ²Ρ‹Ρ… ΡˆΠ°Ρ€Π½ΠΈΡ€Π½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈΠ· условий принадлСТности Ρ‚ΠΎΡ‡Π΅ΠΊ ΡˆΠ°Ρ€Π½ΠΈΡ€ΠΎΠ² парамСтричСски Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π³Π»Π°Π΄ΠΊΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ для ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ полоТСния Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΈ нСравСнства-ограничСния Π½Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ смСТных звСньСв манипулятора. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ уравнСния ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ планирования Π·Π°ΠΊΠΎΠ½ΠΎΠ² измСнСния ΡˆΠ°Ρ€Π½ΠΈΡ€Π½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ пСрСмСщСния Ρ‚ΠΎΡ‡Π΅ΠΊ ΡˆΠ°Ρ€Π½ΠΈΡ€ΠΎΠ² ΠΏΠΎ пространствСнной Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Π½Π°Ρ€Π°Ρ‰ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ для Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ Π·Π²Π΅Π½Π° манипулятора. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ для планирования двиТСния Π³ΠΈΠΏΠ΅Ρ€ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ манипулятора с Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΌ основаниСм ΠΈ Π·ΠΌΠ΅Π΅Π²ΠΈΠ΄Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ±ΠΎΡ‚Π° ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, выстраиваСмой Π½Π° основС Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΡ… ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡˆΠ°Ρ€Π½ΠΈΡ€ΠΎΠ² Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΌ пространств

    Mechanical Stability Margin for Scouting Poses in Modular Snake Robots

    No full text
    This paper presents an algorithm to calculate mechanical stability margins of a Modular Snake Robot (MSR) during scouting poses. Scouting poses are defined as robot configurations in which one or two of the end modules of the robot are raised up to increase the range of perception of sensors that might be placed in its distal parts. The robot center of mass (CoM) and each of the module's contact pad positions are calculated by computing the robot kinematics. Then, this kinematic model is placed in an environment that consist of a height map (the terrain), built on a 2D grid base of defined size and resolution. Due the hyper-stability of the MSR structure, as it features many static contact points with the terrain, we approximate by weighting the distribution of forces to ensure an iso-static simplified problem. Using this information as input, the algorithm calculates a representation of the supporting surface (not necessarily horizontal), and then, it computes the minimum distance of the CoM projection into this surface to one of its edges to define a mechanical stability margin. The effectiveness and robustness of the method is demonstrated by comparisons of simulation and the real robot results. Moreover, a sequence of quasi-static motions bounded by a threshold in the stability margin, keeps the robot stable as it rises. Thus, demonstrating qualitatively the convenience of the method
    corecore