368,961 research outputs found

    On risk-based maintenance: A comprehensive review of three approaches to track the impact of consequence modelling for predicting maintenance actions

    Get PDF
    Since gas plants are progressively increasing near urban areas, a comprehensive tool to plan maintenance and reduce the risk arising from their operations is required. To this end, a comparison of three Risk-Based Maintenance methodologies able to point out maintenance priorities for the most critical components, is presented in this paper. Moreover, while the literature is mostly focused on probabilistic analysis, a particular attention is directed towards consequence analysis throughout this study. The first developed technique is characterized by a Hierarchical Bayesian Network to perform the occurrence analysis and a Failure Modes, Effects and Criticality Analysis to assess the magnitude of the adverse outcomes. The second approach is a Quantitative Risk Analysis carried out via a software named Safeti. Finally, another software called Synergi Plant is adopted for the third methodology, which provides a Risk-Based Inspection plan, through a semiquantitative risk analysis. The proposed study can assist asset manager in adopting the most appropriate methodology to their context, while highlighting priority components. To demonstrate the applicability of the approaches and compare their rankings, a Natural Gas Regulating and Measuring Station is considered as case study. The results showed that the most suited method strongly depends on the available data

    Is it time to rethink project success?

    Get PDF
    The notion of success and failure in software projects are confusing. Failure is often considered in the context of the iron triangle as the inability to meet time, cost and performance constraints. Yet, while there is a consensus around the prevalence of project failure, new projects seem destined to repeat past mistakes. This paper tries to advance the discussion by offering a new perspective for reasoning about the meaning of success and the different types of software project failures. The paper advocates rising beyond the fixation with internal parameters of efficiency. It begins by discussing the limited insights from existing project failure surveys, before offering a four level model addressing the essence of successful delivery and operation in software projects and considering the different measures required in order to utilise richer measurements of success

    Advanced Techniques for Assets Maintenance Management

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThe aim of this paper is to remark the importance of new and advanced techniques supporting decision making in different business processes for maintenance and assets management, as well as the basic need of adopting a certain management framework with a clear processes map and the corresponding IT supporting systems. Framework processes and systems will be the key fundamental enablers for success and for continuous improvement. The suggested framework will help to define and improve business policies and work procedures for the assets operation and maintenance along their life cycle. The following sections present some achievements on this focus, proposing finally possible future lines for a research agenda within this field of assets management

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    Design for diagnostics and prognostics:a physical- functional approach

    Get PDF

    Use of COTS functional analysis software as an IVHM design tool for detection and isolation of UAV fuel system faults

    Get PDF
    This paper presents a new approach to the development of health management solutions which can be applied to both new and legacy platforms during the conceptual design phase. The approach involves the qualitative functional modelling of a system in order to perform an Integrated Vehicle Health Management (IVHM) design – the placement of sensors and the diagnostic rules to be used in interrogating their output. The qualitative functional analysis was chosen as a route for early assessment of failures in complex systems. Functional models of system components are required for capturing the available system knowledge used during various stages of system and IVHM design. MADe™ (Maintenance Aware Design environment), a COTS software tool developed by PHM Technology, was used for the health management design. A model has been built incorporating the failure diagrams of five failure modes for five different components of a UAV fuel system. Thus an inherent health management solution for the system and the optimised sensor set solution have been defined. The automatically generated sensor set solution also contains a diagnostic rule set, which was validated on the fuel rig for different operation modes taking into account the predicted fault detection/isolation and ambiguity group coefficients. It was concluded that when using functional modelling, the IVHM design and the actual system design cannot be done in isolation. The functional approach requires permanent input from the system designer and reliability engineers in order to construct a functional model that will qualitatively represent the real system. In other words, the physical insight should not be isolated from the failure phenomena and the diagnostic analysis tools should be able to adequately capture the experience bases. This approach has been verified on a laboratory bench top test rig which can simulate a range of possible fuel system faults. The rig is fully instrumented in order to allow benchmarking of various sensing solution for fault detection/isolation that were identified using functional analysis
    • …
    corecore