8,383 research outputs found

    Cognitive emotions in e-learning processes and their potential relationship with students’ academic adjustment

    Get PDF
    In times of growing importance and emphasis on improving academic outcomes for young people, their academic selves/lives are increasingly becoming more central to their understanding of their own wellbeing. How they experience and perceive their academic successes or failures, can influence their perceived self-efficacy and eventual academic achievement. To this end, ‘cognitive emotions’, elicited to acquire or develop new skills/knowledges, can play a crucial role as they indicate the state or the “flow” of a student’s emotions, when facing challenging tasks. Within innovative teaching models, measuring the affective components of learning have been mainly based on self-reports and scales which have neglected the real-time detection of emotions, through for example, recording or measuring facial expressions. The aim of the present study is to test the reliability of an ad hoc software trained to detect and classify cognitive emotions from facial expressions across two different environments, namely a video-lecture and a chat with teacher, and to explore cognitive emotions in relation to academic e-selfefficacy and academic adjustment. To pursue these goals, we used video-recordings of ten psychology students from an online university engaging in online learning tasks, and employed software to automatically detect eleven cognitive emotions. Preliminary results support and extend prior studies, illustrating how exploring cognitive emotions in real time can inform the development and success of academic e-learning interventions aimed at monitoring and promoting students’ wellbeing.peer-reviewe

    Associating Facial Expressions and Upper-Body Gestures with Learning Tasks for Enhancing Intelligent Tutoring Systems

    Get PDF
    Learning involves a substantial amount of cognitive, social and emotional states. Therefore, recognizing and understanding these states in the context of learning is key in designing informed interventions and addressing the needs of the individual student to provide personalized education. In this paper, we explore the automatic detection of learner’s nonverbal behaviors involving hand-over-face gestures, head and eye movements and emotions via facial expressions during learning. The proposed computer vision-based behavior monitoring method uses a low-cost webcam and can easily be integrated with modern tutoring technologies. We investigate these behaviors in-depth over time in a classroom session of 40 minutes involving reading and problem-solving exercises. The exercises in the sessions are divided into three categories: an easy, medium and difficult topic within the context of undergraduate computer science. We found that there is a significant increase in head and eye movements as time progresses, as well as with the increase of difficulty level. We demonstrated that there is a considerable occurrence of hand-over-face gestures (on average 21.35%) during the 40 minutes session and is unexplored in the education domain. We propose a novel deep learning approach for automatic detection of hand-over-face gestures in images with a classification accuracy of 86.87%. There is a prominent increase in hand-over-face gestures when the difficulty level of the given exercise increases. The hand-over-face gestures occur more frequently during problem-solving (easy 23.79%, medium 19.84% and difficult 30.46%) exercises in comparison to reading (easy 16.20%, medium 20.06% and difficult 20.18%)

    Human and machine validation of 14 databases of dynamic facial expressions

    Get PDF
    With a shift in interest toward dynamic expressions, numerous corpora of dynamic facial stimuli have been developed over the past two decades. The present research aimed to test existing sets of dynamic facial expressions (published between 2000 and 2015) in a cross-corpus validation effort. For this, 14 dynamic databases were selected that featured facial expressions of the basic six emotions (anger, disgust, fear, happiness, sadness, surprise) in posed or spontaneous form. In Study 1, a subset of stimuli from each database (N = 162) were presented to human observers and machine analysis, yielding considerable variance in emotion recognition performance across the databases. Classification accuracy further varied with perceived intensity and naturalness of the displays, with posed expressions being judged more accurately and as intense, but less natural compared to spontaneous ones. Study 2 aimed for a full validation of the 14 databases by subjecting the entire stimulus set (N = 3812) to machine analysis. A FACS-based Action Unit (AU) analysis revealed that facial AU configurations were more prototypical in posed than spontaneous expressions. The prototypicality of an expression in turn predicted emotion classification accuracy, with higher performance observed for more prototypical facial behavior. Furthermore, technical features of each database (i.e., duration, face box size, head rotation, and motion) had a significant impact on recognition accuracy. Together, the findings suggest that existing databases vary in their ability to signal specific emotions, thereby facing a trade-off between realism and ecological validity on the one end, and expression uniformity and comparability on the other

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Less is More: Facial Landmarks can Recognize a Spontaneous Smile

    Full text link
    Smile veracity classification is a task of interpreting social interactions. Broadly, it distinguishes between spontaneous and posed smiles. Previous approaches used hand-engineered features from facial landmarks or considered raw smile videos in an end-to-end manner to perform smile classification tasks. Feature-based methods require intervention from human experts on feature engineering and heavy pre-processing steps. On the contrary, raw smile video inputs fed into end-to-end models bring more automation to the process with the cost of considering many redundant facial features (beyond landmark locations) that are mainly irrelevant to smile veracity classification. It remains unclear to establish discriminative features from landmarks in an end-to-end manner. We present a MeshSmileNet framework, a transformer architecture, to address the above limitations. To eliminate redundant facial features, our landmarks input is extracted from Attention Mesh, a pre-trained landmark detector. Again, to discover discriminative features, we consider the relativity and trajectory of the landmarks. For the relativity, we aggregate facial landmark that conceptually formats a curve at each frame to establish local spatial features. For the trajectory, we estimate the movements of landmark composed features across time by self-attention mechanism, which captures pairwise dependency on the trajectory of the same landmark. This idea allows us to achieve state-of-the-art performances on UVA-NEMO, BBC, MMI Facial Expression, and SPOS datasets

    NĂ€gemistaju automaatsete protsesside eksperimentaalne uurimine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneVĂ€itekiri keskendub nĂ€gemistaju protsesside eksperimentaalsele uurimisele, mis on suuremal vĂ”i vĂ€hemal mÀÀral automaatsed. Uurimistöös on kasutatud erinevaid eksperimentaalseid katseparadigmasid ja katsestiimuleid ning nii kĂ€itumuslikke- kui ka ajukuvamismeetodeid. Esimesed kolm empiirilist uurimust kĂ€sitlevad liikumisinformatsiooni töötlust, mis on evolutsiooni kĂ€igus kujunenud ĂŒheks olulisemaks baasprotsessiks nĂ€gemistajus. Esmalt huvitas meid, kuidas avastatakse liikuva objekti suunamuutusi, kui samal ajal toimub ka taustal liikumine (Uurimus I). NĂ€gemistaju uurijad on pikka aega arvanud, et liikumist arvutatakse alati mĂ”ne vĂ€lise objekti vĂ”i tausta suhtes. Meie uurimistulemused ei kinnitanud taolise suhtelise liikumise printsiibi paikapidavust ning toetavad pigem seisukohta, et eesmĂ€rkobjekti liikumisinformatsiooni töötlus on automaatne protsess, mis tuvastab silma pĂ”hjas toimuvaid nihkeid, ja taustal toimuv seda eriti ei mĂ”juta. Teise uurimuse tulemused (Uurimus II) nĂ€itasid, et nĂ€gemissĂŒsteem töötleb vĂ€ga edukalt ka seda liikumisinformatsiooni, millele vaatleja teadlikult tĂ€helepanu ei pööra. See tĂ€hendab, et samal ajal, kui inimene on mĂ”ne tĂ€helepanu hĂ”lmava tegevusega ametis, suudab tema aju taustal toimuvaid sĂŒndmusi automaatselt registreerida. IgapĂ€evaselt on inimese nĂ€gemisvĂ€ljas alati palju erinevaid objekte, millel on erinevad omadused, mistĂ”ttu jĂ€rgmiseks huvitas meid (Uurimus III), kuidas ĂŒhe tunnuse (antud juhul vĂ€rvimuutuse) töötlemist mĂ”jutab mĂ”ne teise tunnusega toimuv (antud juhul liikumiskiiruse) muutus. NĂ€itasime, et objekti liikumine parandas sama objekti vĂ€rvimuutuse avastamist, mis viitab, et nende kahe omaduse töötlemine ajus ei ole pĂ€ris eraldiseisev protsess. Samuti tĂ€hendab taoline tulemus, et hoolimata ĂŒhele tunnusele keskendumisest ei suuda inimene ignoreerida teist tĂ€helepanu tĂ”mbavat tunnust (liikumine), mis viitab taas kord automaatsetele töötlusprotsessidele. Neljas uurimus keskendus emotsionaalsete nĂ€ovĂ€ljenduste töötlusele, kuna need kannavad keskkonnas hakkamasaamiseks vajalikke sotsiaalseid signaale, mistĂ”ttu on alust arvata, et nende töötlus on kujunenud suuresti automaatseks protsessiks. NĂ€itasime, et emotsiooni vĂ€ljendavaid nĂ€gusid avastati kiiremini ja kergemini kui neutraalse ilmega nĂ€gusid ning et vihane nĂ€gu tĂ”mbas rohkem tĂ€helepanu kui rÔÔmus (Uurimus IV). VĂ€itekirja viimane osa puudutab visuaalset lahknevusnegatiivsust (ingl Visual Mismatch Negativity ehk vMMN), mis nĂ€itab aju vĂ”imet avastada automaatselt erinevusi enda loodud mudelist ĂŒmbritseva keskkonna kohta. Selle automaatse erinevuse avastamise mehhanismi uurimisse andsid oma panuse nii Uurimus II kui Uurimus IV, mis mĂ”lemad pakuvad vĂ€lja tĂ”endusi vMMN tekkimise kohta eri tingimustel ja katseparadigmades ning ka vajalikke metodoloogilisi tĂ€iendusi. Uurimus V on esimene kogu siiani ilmunud temaatilist teadustööd hĂ”lmav ĂŒlevaateartikkel ja metaanalĂŒĂŒs visuaalsest lahknevusnegatiivsusest psĂŒhhiaatriliste ja neuroloogiliste haiguste korral, mis panustab oluliselt visuaalse lahknevusnegatiivsuse valdkonna arengusse.The research presented and discussed in the thesis is an experimental exploration of processes in visual perception, which all display a considerable amount of automaticity. These processes are targeted from different angles using different experimental paradigms and stimuli, and by measuring both behavioural and brain responses. In the first three empirical studies, the focus is on motion detection that is regarded one of the most basic processes shaped by evolution. Study I investigated how motion information of an object is processed in the presence of background motion. Although it is widely believed that no motion can be perceived without establishing a frame of reference with other objects or motion on the background, our results found no support for relative motion principle. This finding speaks in favour of a simple and automatic process of detecting motion, which is largely insensitive to the surrounding context. Study II shows that the visual system is built to automatically process motion information that is outside of our attentional focus. This means that even if we are concentrating on some task, our brain constantly monitors the surrounding environment. Study III addressed the question of what happens when multiple stimulus qualities (motion and colour) are present and varied, which is the everyday reality of our visual input. We showed that velocity facilitated the detection of colour changes, which suggests that processing motion and colour is not entirely isolated. These results also indicate that it is hard to ignore motion information, and processing it is rather automatically initiated. The fourth empirical study focusses on another example of visual input that is processed in a rather automatic way and carries high survival value – emotional expressions. In Study IV, participants detected emotional facial expressions faster and more easily compared with neutral facial expressions, with a tendency towards more automatic attention to angry faces. In addition, we investigated the emergence of visual mismatch negativity (vMMN) that is one of the most objective and efficient methods for analysing automatic processes in the brain. Study II and Study IV proposed several methodological gains for registering this automatic change-detection mechanism. Study V is an important contribution to the vMMN research field as it is the first comprehensive review and meta-analysis of the vMMN studies in psychiatric and neurological disorders

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract
    • 

    corecore