122 research outputs found

    In Situ Visualization of Performance Data in Parallel CFD Applications

    Get PDF
    This thesis summarizes the work of the author on visualization of performance data in parallel Computational Fluid Dynamics (CFD) simulations. Current performance analysis tools are unable to show their data on top of complex simulation geometries (e.g. an aircraft engine). But in CFD simulations, performance is expected to be affected by the computations being carried out, which in turn are tightly related to the underlying computational grid. Therefore it is imperative that performance data is visualized on top of the same computational geometry which they originate from. However, performance tools have no native knowledge of the underlying mesh of the simulation. This scientific gap can be filled by merging the branches of HPC performance analysis and in situ visualization of CFD simulations data, which shall be done by integrating existing, well established state-of-the-art tools from each field. In this threshold, an extension for the open-source performance tool Score-P was designed and developed, which intercepts an arbitrary number of manually selected code regions (mostly functions) and send their respective measurements – amount of executions and cumulative time spent – to the visualization software ParaView – through its in situ library, Catalyst –, as if they were any other flow-related variable. Subsequently the tool was extended with the capacity to also show communication data (messages sent between MPI ranks) on top of the CFD mesh. Testing and evaluation are done with two industry-grade codes: Rolls-Royce’s CFD code, Hydra, and Onera, DLR and Airbus’ CFD code, CODA. On the other hand, it has been also noticed that the current performance tools have limited capacity of displaying their data on top of three-dimensional, framed (i.e. time-stepped) representations of the cluster’s topology. Parallel to that, in order for the approach not to be limited to codes which already have the in situ adapter, it was extended to take the performance data and display it – also in codes without in situ – on a three-dimensional, framed representation of the hardware resources being used by the simulation. Testing is done with the Multi-Grid and Block Tri-diagonal NAS Parallel Benchmarks (NPB), as well as with Hydra and CODA again. The benchmarks are used to explain how the new visualizations work, while real performance analyses are done with the industry-grade CFD codes. The proposed solution is able to provide concrete performance insights, which would not have been reached with the current performance tools and which motivated beneficial changes in the respective source code in real life. Finally, its overhead is discussed and proven to be suitable for usage with CFD codes. The dissertation provides a valuable addition to the state of the art of highly parallel CFD performance analysis and serves as basis for further suggested research directions

    Computational Methods in Science and Engineering : Proceedings of the Workshop SimLabs@KIT, November 29 - 30, 2010, Karlsruhe, Germany

    Get PDF
    In this proceedings volume we provide a compilation of article contributions equally covering applications from different research fields and ranging from capacity up to capability computing. Besides classical computing aspects such as parallelization, the focus of these proceedings is on multi-scale approaches and methods for tackling algorithm and data complexity. Also practical aspects regarding the usage of the HPC infrastructure and available tools and software at the SCC are presented

    Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015) Krakow, Poland

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015

    Supercomputing Frontiers

    Get PDF
    This open access book constitutes the refereed proceedings of the 7th Asian Conference Supercomputing Conference, SCFA 2022, which took place in Singapore in March 2022. The 8 full papers presented in this book were carefully reviewed and selected from 21 submissions. They cover a range of topics including file systems, memory hierarchy, HPC cloud platform, container image configuration workflow, large-scale applications, and scheduling

    Computational fluid dynamics-based evaluation and optimisation of feed spacer design parameters for reverse osmosis membrane modules

    Get PDF
    This thesis provides insights into the impact of changing parameters on feed spacer performance, to look for possible trends and correlations, and to explain the observed patterns, in order to enhance the understanding of feed spacers in RO modules. Studies showed that selecting the best-performing spacer is not only related to the performance measure selected for comparison but is also affected by other operational parameters (flowrate and the concentration of salt in the feed)

    The readying of applications for heterogeneous computing

    Get PDF
    High performance computing is approaching a potentially significant change in architectural design. With pressures on the cost and sheer amount of power, additional architectural features are emerging which require a re-think to the programming models deployed over the last two decades. Today's emerging high performance computing (HPC) systems are maximising performance per unit of power consumed resulting in the constituent parts of the system to be made up of a range of different specialised building blocks, each with their own purpose. This heterogeneity is not just limited to the hardware components but also in the mechanisms that exploit the hardware components. These multiple levels of parallelism, instruction sets and memory hierarchies, result in truly heterogeneous computing in all aspects of the global system. These emerging architectural solutions will require the software to exploit tremendous amounts of on-node parallelism and indeed programming models to address this are emerging. In theory, the application developer can design new software using these models to exploit emerging low power architectures. However, in practice, real industrial scale applications last the lifetimes of many architectural generations and therefore require a migration path to these next generation supercomputing platforms. Identifying that migration path is non-trivial: With applications spanning many decades, consisting of many millions of lines of code and multiple scientific algorithms, any changes to the programming model will be extensive and invasive and may turn out to be the incorrect model for the application in question. This makes exploration of these emerging architectures and programming models using the applications themselves problematic. Additionally, the source code of many industrial applications is not available either due to commercial or security sensitivity constraints. This thesis highlights this problem by assessing current and emerging hard- ware with an industrial strength code, and demonstrating those issues described. In turn it looks at the methodology of using proxy applications in place of real industry applications, to assess their suitability on the next generation of low power HPC offerings. It shows there are significant benefits to be realised in using proxy applications, in that fundamental issues inhibiting exploration of a particular architecture are easier to identify and hence address. Evaluations of the maturity and performance portability are explored for a number of alternative programming methodologies, on a number of architectures and highlighting the broader adoption of these proxy applications, both within the authors own organisation, and across the industry as a whole

    WTEC Panel Report on International Assessment of Research and Development in Simulation-Based Engineering and Science

    Full text link
    • …
    corecore