5 research outputs found

    Eye Movement Alterations in Post-COVID-19 Condition: A Proof-of-Concept Study

    Get PDF
    Pathophysiology; Post-COVID-19 condition; Saccadic movementFisiopatología; Condición post-COVID-19; Movimiento sacádicoFisiopatologia; Condició post-COVID-19; Moviment sacàdicThere is much evidence pointing out eye movement alterations in several neurological diseases. To the best of our knowledge, this is the first video-oculography study describing potential alterations of eye movements in the post-COVID-19 condition. Visually guided saccades, memory-guided saccades, and antisaccades in horizontal axis were measured. In all visual tests, the stimulus was deployed with a gap condition. The duration of the test was between 5 and 7 min per participant. A group of n=9 patients with the post-COVID-19 condition was included in this study. Values were compared with a group (n=9) of healthy volunteers whom the SARS-CoV-2 virus had not infected. Features such as centripetal and centrifugal latencies, success rates in memory saccades, antisaccades, and blinks were computed. We found that patients with the post-COVID-19 condition had eye movement alterations mainly in centripetal latency in visually guided saccades, the success rate in memory-guided saccade test, latency in antisaccades, and its standard deviation, which suggests the involvement of frontoparietal networks. Further work is required to understand these eye movements’ alterations and their functional consequences

    Assessment of saccadic eye movements in healthy subjects using consumer-grade mobile devices

    Full text link
    Assessing eye movement features may provide insight into neurological health, inform diagnoses, and guide clinical intervention. The potential to utilize saccadic eye movement latency is especially promising as a clinical biomarker in identifying and treating neurodegenerative disease. Artificial intelligence and deep learning technology have improved the feasibility of eye-tracking methodology and scalability in research studies. Tablet and smartphone-based tracking equipment have been shown to provide quantitative data of comparable accuracy to more costly, special-built equipment while reducing cost and complexity in experimental procedures. Establishing an efficient and accurate measurement tool to aid the detection and tracking of diseases may benefit the development of comprehensive treatment and monitoring strategies. This study, therefore, seeks to examine oculomotor function through saccade latency and error rate in healthy adults with respect to age, demonstrating a mobile device’s efficacy in assessing subtle eye movements and establishing a dataset upon which to guide further investigation

    Eye Movement and Pupil Measures: A Review

    Get PDF
    Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first describe the main oculomotor events studied in the literature, and their characteristics exploited by different measures. Next, we review various eye movement and pupil measures from prior literature. Finally, we discuss our observations based on applications of these measures, the benefits and practical challenges involving these measures, and our recommendations on future eye-tracking research directions

    Work, aging, mental fatigue, and eye movement dynamics

    Get PDF

    Measuring Saccade Latency using Smartphone Cameras

    No full text
    Objective: Accurate quantification of neurodegenerative disease progression is an ongoing challenge that complicates efforts to understand and treat these conditions. Clinical studies have shown that eye movement features may serve as objective biomarkers to support diagnosis and tracking of disease progression. Here, we demonstrate that saccade latency - an eye movement measure of reaction time - can be measured robustly outside of the clinical environment with a smartphone camera. Methods: To enable tracking of saccade latency in large cohorts of patients and control subjects, we combined a deep convolutional neural network for gaze estimation with a model-based approach for saccade onset determination that provides automated signal-quality quantification and artifact rejection. Results: Simultaneous recordings with a smartphone and a high-speed camera resulted in negligible differences in saccade latency distributions. Furthermore, we demonstrated that the constraint of chinrest support can be removed when recording healthy subjects. Repeat smartphone-based measurements of saccade latency in eleven self-reported healthy subjects resulted in an intraclass correlation coefficient of 0.76, showing our approach has good to excellent test-retest reliability. Additionally, we conducted over 19,000 saccade latency measurements in 29 self-reported healthy subjects and observed significant intra- and inter-subject variability, which highlights the importance of individualized tracking. Lastly, we showed that with around 65 measurements we can estimate mean saccade latency to within less-than-10-ms precision, which takes within four minutes with our setup. Conclusion and Significance: By enabling repeat measurements of saccade latency and its distribution in individual subjects, our framework opens the possibility of quantifying patient state on a finer timescale in a broader population than previously possible
    corecore