852 research outputs found

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2013-2014

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013–2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 14.5Minnewresearchgrantsandcontractsthisyear.Facultyandstaffalsoexpandedtheireffortsineducationandtraining,throughNationalScienceFoundation–sponsoredsitesforResearchExperiencesforUndergraduatesandforTeachers.Asacommunity,wehostedacompellingseriesofdistinguishedinvitedspeakers,andemphasizedthethemeofInnovationsattheIntersectionsofMicro/NanofabricationTechnology,Biology,andBiomedicineatourannualFutureofLightSymposium.Wetookaleadershiproleinrunningnationalworkshopsonemergingphotonicfields,includinganOSAIncubatoronControlledLightPropagationthroughComplexMedia,andanNSFWorkshoponNoninvasiveImagingofBrainFunction.HighlightsofourresearchachievementsfortheyearincludeadistinctivePresidentialEarlyCareerAwardforScientistsandEngineers(PECASE)forAssistantProfessorXueHan,anambitiousnewDoD−sponsoredgrantforMulti−ScaleMulti−DisciplinaryModelingofElectronicMaterialsledbyProfessorEnricoBellotti,launchofourNIH−sponsoredCenterforInnovationinPointofCareTechnologiesfortheFutureofCancerCareledbyProfessorCathyKlapperich,andsuccessfulcompletionoftheambitiousIARPA−fundedcontractforNextGenerationSolidImmersionMicroscopyforFaultIsolationinBack−SideCircuitAnalysisledbyProfessorBennettGoldberg.Thesethreeprograms,whichrepresentmorethan14.5M in new research grants and contracts this year. Faculty and staff also expanded their efforts in education and training, through National Science Foundation–sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Innovations at the Intersections of Micro/Nanofabrication Technology, Biology, and Biomedicine at our annual Future of Light Symposium. We took a leadership role in running national workshops on emerging photonic fields, including an OSA Incubator on Controlled Light Propagation through Complex Media, and an NSF Workshop on Noninvasive Imaging of Brain Function. Highlights of our research achievements for the year include a distinctive Presidential Early Career Award for Scientists and Engineers (PECASE) for Assistant Professor Xue Han, an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, launch of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and successful completion of the ambitious IARPA-funded contract for Next Generation Solid Immersion Microscopy for Fault Isolation in Back-Side Circuit Analysis led by Professor Bennett Goldberg. These three programs, which represent more than 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Center—the centerpiece of our translational biophotonics program—continues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2013-2014

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013–2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 14.5Minnewresearchgrantsandcontractsthisyear.Facultyandstaffalsoexpandedtheireffortsineducationandtraining,throughNationalScienceFoundation–sponsoredsitesforResearchExperiencesforUndergraduatesandforTeachers.Asacommunity,wehostedacompellingseriesofdistinguishedinvitedspeakers,andemphasizedthethemeofInnovationsattheIntersectionsofMicro/NanofabricationTechnology,Biology,andBiomedicineatourannualFutureofLightSymposium.Wetookaleadershiproleinrunningnationalworkshopsonemergingphotonicfields,includinganOSAIncubatoronControlledLightPropagationthroughComplexMedia,andanNSFWorkshoponNoninvasiveImagingofBrainFunction.HighlightsofourresearchachievementsfortheyearincludeadistinctivePresidentialEarlyCareerAwardforScientistsandEngineers(PECASE)forAssistantProfessorXueHan,anambitiousnewDoD−sponsoredgrantforMulti−ScaleMulti−DisciplinaryModelingofElectronicMaterialsledbyProfessorEnricoBellotti,launchofourNIH−sponsoredCenterforInnovationinPointofCareTechnologiesfortheFutureofCancerCareledbyProfessorCathyKlapperich,andsuccessfulcompletionoftheambitiousIARPA−fundedcontractforNextGenerationSolidImmersionMicroscopyforFaultIsolationinBack−SideCircuitAnalysisledbyProfessorBennettGoldberg.Thesethreeprograms,whichrepresentmorethan14.5M in new research grants and contracts this year. Faculty and staff also expanded their efforts in education and training, through National Science Foundation–sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Innovations at the Intersections of Micro/Nanofabrication Technology, Biology, and Biomedicine at our annual Future of Light Symposium. We took a leadership role in running national workshops on emerging photonic fields, including an OSA Incubator on Controlled Light Propagation through Complex Media, and an NSF Workshop on Noninvasive Imaging of Brain Function. Highlights of our research achievements for the year include a distinctive Presidential Early Career Award for Scientists and Engineers (PECASE) for Assistant Professor Xue Han, an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, launch of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and successful completion of the ambitious IARPA-funded contract for Next Generation Solid Immersion Microscopy for Fault Isolation in Back-Side Circuit Analysis led by Professor Bennett Goldberg. These three programs, which represent more than 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Center—the centerpiece of our translational biophotonics program—continues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    The Boston University Photonics Center annual report 2012-2013

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2012-2013 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center during the period July 2012 through June 2013. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. The Photonics Center continues to grow as an international leader in photonics research, while executing the Center’s strategic plan and serving as a university-wide resource for several affiliate Centers. For more information about the strategic plan, read the Photonics Center Strategic Plan section on page 10. In research, Photonics Center faculty published nearly 150 journal papers spanning the field of photonics. A number of awards for outstanding achievement in education and research were presented to Photonics Center faculty members, including a Peter Paul Professorship for Professor Xue Han, an NSF Career Award for Professor Ajay Joshi, and the 2012 Innovator of the Year Award from Boston University for Professor Theodore Moustakas. New external grant funding for the 2012- 2013 fiscal year totaled over $21.8M. For more information on our research activities, read the Research section on page 24. In technology development, the Photonics Center has turned a chapter, by completing the transition from a focus on Defense/ Security applications to a focus on the healthcare market sector. The commercial sector is expected to energize the technology development efforts for the foreseeable future, but the roots in defense/security are still important and the Center will continue to pursue new research grants in this area. For more information on our technology development program and on specific projects, read the Technology Development section on page 45. In education, 20 Photonics Center graduate students received Ph.D. diplomas. Photonics Center faculty taught 32 photonics courses. The Center supported a Research Experiences for Teachers (RET) site in Biophotonic Sensors and Systems for 10 middle school and high school teachers. The Photonics Center sponsored the Herbert J. Berman “Future of Light” Prize at the University’s Scholars Day. For more on our education programs, read the Education section on page 54. In commercialization, Boston University’s Business Innovation Center (BIC) currently hosts seven technology start-up companies. There is a healthy turnover in the Innovation Center space with a total of 19 companies residing at BIC over the past year. The mix of companies includes: life sciences, biotechnology, medical devices, photonics, and clean energy; and nine of the 19 companies originated from within BU. All the BIC tenants are engaged in the commercialization of new technologies of importance to society and all are active in the BU community in terms of offering internships, employment opportunities or research collaborations. For more information about Business Innovation Center activities, read the Business Innovation Center chapter in the Facilities and Equipment section on page 66

    The Boston University Photonics Center annual report 2012-2013

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2012-2013 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center during the period July 2012 through June 2013. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. The Photonics Center continues to grow as an international leader in photonics research, while executing the Center’s strategic plan and serving as a university-wide resource for several affiliate Centers. For more information about the strategic plan, read the Photonics Center Strategic Plan section on page 10. In research, Photonics Center faculty published nearly 150 journal papers spanning the field of photonics. A number of awards for outstanding achievement in education and research were presented to Photonics Center faculty members, including a Peter Paul Professorship for Professor Xue Han, an NSF Career Award for Professor Ajay Joshi, and the 2012 Innovator of the Year Award from Boston University for Professor Theodore Moustakas. New external grant funding for the 2012- 2013 fiscal year totaled over $21.8M. For more information on our research activities, read the Research section on page 24. In technology development, the Photonics Center has turned a chapter, by completing the transition from a focus on Defense/ Security applications to a focus on the healthcare market sector. The commercial sector is expected to energize the technology development efforts for the foreseeable future, but the roots in defense/security are still important and the Center will continue to pursue new research grants in this area. For more information on our technology development program and on specific projects, read the Technology Development section on page 45. In education, 20 Photonics Center graduate students received Ph.D. diplomas. Photonics Center faculty taught 32 photonics courses. The Center supported a Research Experiences for Teachers (RET) site in Biophotonic Sensors and Systems for 10 middle school and high school teachers. The Photonics Center sponsored the Herbert J. Berman “Future of Light” Prize at the University’s Scholars Day. For more on our education programs, read the Education section on page 54. In commercialization, Boston University’s Business Innovation Center (BIC) currently hosts seven technology start-up companies. There is a healthy turnover in the Innovation Center space with a total of 19 companies residing at BIC over the past year. The mix of companies includes: life sciences, biotechnology, medical devices, photonics, and clean energy; and nine of the 19 companies originated from within BU. All the BIC tenants are engaged in the commercialization of new technologies of importance to society and all are active in the BU community in terms of offering internships, employment opportunities or research collaborations. For more information about Business Innovation Center activities, read the Business Innovation Center chapter in the Facilities and Equipment section on page 66

    The Boston University Photonics Center annual report 2011-2012

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2011-2012 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center during the period July 2011 through June 2012. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. In 2010, the Photonics Center unveiled a five-year strategic plan as part of the University’s comprehensive review of centers and institutes. The Photonics Center continues to show progress on the Photonics Center strategic plan and is growing the Center’s position as an international leader in photonics research. For more information about the strategic plan, read the Photonics Center Strategic Plan section on page 11. In research, Photonics Center faculty published more than 100 journal papers spanning the field of photonics. A number of awards for outstanding achievement in education and research were presented to Photonics Center faculty members, including a Presidential Early Career Award for Scientists and Engineers (PECASE) for Professor Altug, the Boston University Peter Paul Professorship for Professor Han, and a Dean’s Catalyst Award for Professor Joshi. New external grant funding for the 2011-2012 fiscal year totaled $15.8M. For more information on our research activities, read the Research section on page 26. In technology development, the close of FY11 marked the end of the Photonics Center’s decade-long collaboration pipeline technology development with the Army Research Laboratory (ARL). The successful outcomes of that unique partnership include a compelling series of photonics technology prototypes aimed at force protection. Our direct collaboration with Army end users has enabled transformative advanced in sniper detection of bioterror agents, and nuclear threat detection. In the past year, the Photonics Center has expanded the scope of its unique photonic technology development program to include applications in the commercial healthcare sector. For more information on our technology development program and on specific projects, read the Technology Development section on page 52. In education, 17 Photonics Center graduate students received Ph.D. diplomas. Photonics Center faculty taught 29 photonics courses. The Center supported a Research Experiences for Teachers (RET) site in Biophotonic Sensors and Systems for 10 middle school and high school teachers. The Photonics Center sponsored the Herbert J. Berman “Future of Light” Prize at the University’s Science and Engineering Day. Professor Goldberg’s Boston Urban Fellows Project started its seventh year. For more on our education programs, read the Education section on page 64. In commercialization, the Business Innovation Center continues to operate at capacity. Its tenants include 11 technology companies with a majority having core business interests primarily in photonics and life sciences. It houses several companies founded by current and former BU faculty and students and provides students with an opportunity to assist, observe, and learn from start-up companies. For more information about Business Innovation Center activities, read the Business Innovation Center chapter in the Facilities and Equipment section on page 78

    Annual Research Report, 2009-2010

    Get PDF
    Annual report of collaborative research projects of Old Dominion University faculty and students in partnership with business, industry and governmenthttps://digitalcommons.odu.edu/or_researchreports/1001/thumbnail.jp

    A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey

    Full text link
    The growing interest in the Metaverse has generated momentum for members of academia and industry to innovate toward realizing the Metaverse world. The Metaverse is a unique, continuous, and shared virtual world where humans embody a digital form within an online platform. Through a digital avatar, Metaverse users should have a perceptual presence within the environment and can interact and control the virtual world around them. Thus, a human-centric design is a crucial element of the Metaverse. The human users are not only the central entity but also the source of multi-sensory data that can be used to enrich the Metaverse ecosystem. In this survey, we study the potential applications of Brain-Computer Interface (BCI) technologies that can enhance the experience of Metaverse users. By directly communicating with the human brain, the most complex organ in the human body, BCI technologies hold the potential for the most intuitive human-machine system operating at the speed of thought. BCI technologies can enable various innovative applications for the Metaverse through this neural pathway, such as user cognitive state monitoring, digital avatar control, virtual interactions, and imagined speech communications. This survey first outlines the fundamental background of the Metaverse and BCI technologies. We then discuss the current challenges of the Metaverse that can potentially be addressed by BCI, such as motion sickness when users experience virtual environments or the negative emotional states of users in immersive virtual applications. After that, we propose and discuss a new research direction called Human Digital Twin, in which digital twins can create an intelligent and interactable avatar from the user's brain signals. We also present the challenges and potential solutions in synchronizing and communicating between virtual and physical entities in the Metaverse
    • 

    corecore