3 research outputs found

    Prevalence of interactions and influence of performance constraints on kick outcomes across Australian Football tiers: Implications for representative practice designs

    Get PDF
    Introduction: Representative learning design is a key feature of the theory of ecological dynamics, conceptualising how task constraints can be manipulated in training designs to help athletes self-regulate during their interactions with information-rich performance environments. Implementation of analytical methodologies can support representative designs of practice environments by practitioners recording how interacting constraints influence events, that emerge under performance conditions. To determine key task constraints on kicking skill performance, the extent to which interactions of constraints differ in prevalence and influence on kicking skills was investigated across competition tiers in Australian Football (AF). Method: A data sample of kicks (n = 29,153) was collected during junior, state-level and national league matches. Key task constraints were recorded for each kick, with performance outcome recorded as effective or ineffective. Rules were based on frequency and strength of associations between constraints and kick outcomes, generated using the Apriori algorithm. Results: Univariate analysis revealed that low kicking effectiveness was associated with physical pressure (37%), whereas high efficiency emerged when kicking to an open target (70%). Between-competition comparisons showed differences in constraint interactions through seven unique rules and differences in confidence levels in shared rules. Discussion: Results showed how understanding of key constraints interactions, and prevalence during competitive performance, can be used to inform representative learning designs in athlete training programmes. Findings can be used to specify how the competitive performance environment differs between competition tiers, supporting the specification of information in training designs, representative of different performance levels

    Shared Multidrug Resistance Patterns in Chicken-Associated Escherichia coli Identified by Association Rule Mining

    Get PDF
    Using multiple antimicrobials in food animals may incubate genetically-linked multidrug-resistance (MDR) in enteric bacteria, which can contaminate meat at slaughter. The U.S. National Antimicrobial Resistance Monitoring System tested 14,418 chicken-associated Escherichia coli between 2004 and 2012 for resistance to 15 antimicrobials, resulting in >32,000 possible MDR patterns. We analyzed MDR patterns in this dataset with association rule mining, also called market-basket analysis. The association rules were pruned with four quality measures resulting in a <1% false-discovery rate. MDR rules were more stable across consecutive years than between slaughter and retail. Rules were decomposed into networks with antimicrobials as nodes and rules as edges. A strong subnetwork of beta-lactam resistance existed in each year and the beta-lactam resistances also had strong associations with sulfisoxazole, gentamicin, streptomycin and tetracycline resistances. The association rules concur with previously identified E. coli resistance patterns but provide significant flexibility for studying MDR in large datasets
    corecore