3,971 research outputs found

    Quality in Measurement: Beyond the deployment barrier

    Get PDF
    Network measurement stands at an intersection in the development of the science. We explore possible futures for the area and propose some guidelines for the development of stronger measurement techniques. The paper concludes with a discussion of the work of the NLANR and WAND network measurement groups including the NLANR Network Analysis Infrastructure, AMP, PMA, analysis of Voice over IP traffic and separation of HTTP delays into queuing delay, network latency and server delay

    Increasing resilience of ATM networks using traffic monitoring and automated anomaly analysis

    Get PDF
    Systematic network monitoring can be the cornerstone for the dependable operation of safety-critical distributed systems. In this paper, we present our vision for informed anomaly detection through network monitoring and resilience measurements to increase the operators' visibility of ATM communication networks. We raise the question of how to determine the optimal level of automation in this safety-critical context, and we present a novel passive network monitoring system that can reveal network utilisation trends and traffic patterns in diverse timescales. Using network measurements, we derive resilience metrics and visualisations to enhance the operators' knowledge of the network and traffic behaviour, and allow for network planning and provisioning based on informed what-if analysis

    Validation of simulated real world TCP stacks

    Get PDF
    The TCP models in ns-2 have been validated and are widely used in network research. They are however not aimed at producing results consistent with a TCP implementation, they are rather designed to be a general model for TCP congestion control. The Network Simulation Cradle makes real world TCP implementations available to ns-2: Linux, FreeBSD and OpenBSD can all be simulated as easily as using the original simplified models. These simulated TCP implementations can be validated by directly comparing packet traces from simulations to traces measured from a real network. We describe the Network Simulation Cradle, present packet trace comparison results showing the high degree of accuracy possible when simulating with real TCP implementations and briefly show how this is reflected in a simulation study of TCP throughput

    TCP performance over end-to-end rate control and stochastic available capacity

    Get PDF
    Motivated by TCP over end-to-end ABR, we study the performance of adaptive window congestion control, when it operates over an explicit feedback rate-control mechanism, in a situation in which the bandwidth available to the elastic traffic is stochastically time varying. It is assumed that the sender and receiver of the adaptive window protocol are colocated with the rate-control endpoints. The objective of the study is to understand if the interaction of the rate-control loop and the window-control loop is beneficial for end-to-end throughput, and how the parameters of the problem (propagation delay, bottleneck buffers, and rate of variation of the available bottleneck bandwidth) affect the performance.The available bottleneck bandwidth is modeled as a two-state Markov chain. We develop an analysis that explicitly models the bottleneck buffers, the delayed explicit rate feedback, and TCP's adaptive window mechanism. The analysis, however, applies only when the variations in the available bandwidth occur over periods larger than the round-trip delay. For fast variations of the bottleneck bandwidth, we provide results from a simulation on a TCP testbed that uses Linux TCP code, and a simulation/emulation of the network model inside the Linux kernel.We find that, over end-to-end ABR, the performance of TCP improves significantly if the network bottleneck bandwidth variations are slow as compared to the round-trip propagation delay. Further, we find that TCP over ABR is relatively insensitive to bottleneck buffer size. These results are for a short-term average link capacity feedback at the ABR level (INSTCAP). We use the testbed to study EFFCAP feedback, which is motivated by the notion of the effective capacity of the bottleneck link. We find that EFFCAP feedback is adaptive to the rate of bandwidth variations at the bottleneck link, and thus yields good performance (as compared to INSTCAP) over a wide range of the rate of bottleneck bandwidth variation. Finally, we study if TCP over ABR, with EFFCAP feedback, provides throughput fairness even if the connections have different round-trip propagation delays
    • ā€¦
    corecore