690 research outputs found

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies

    A Camera-Based Energy Management of Computer Displays and TV Sets

    Get PDF

    High Efficiency and Wide Color Gamut Liquid Crystal Displays

    Get PDF
    Liquid crystal display (LCD) has become ubiquitous and indispensable in our daily life. Recently, it faces strong competition from organic light emitting diode (OLED). In order to maintain a strong leader position, LCD camp has an urgent need to enrich the color performance and reduce the power consumption. This dissertation focuses on solving these two emerging and important challenges. In the first part of the dissertation we investigate the quantum dot (QD) technology to improve the both the color gamut and the light efficiency of LCD. QD emits saturated color and grants LCD the capability to reproduce color vivid images. Moreover, the QD emission spectrum can be custom designed to match to transmission band of color filters. To fully take advantage of QD\u27s unique features, we propose a systematic modelling of the LCD backlight and optimize the QD spectrum to simultaneously maximize the color gamut and light efficiency. Moreover, QD enhanced LCD demonstrates several advantages: excellent ambient contrast, negligible color shift and controllable white point. Besides three primary LCD, We also present a spatiotemporal four-primary QD enhanced LCD. The LCD\u27s color is generated partially from time domain and partially from spatial domain. As a result, this LCD mode offers 1.5× increment in spatial resolution, 2× brightness enhancement, slightly larger color gamut and mitigated LC response requirement (~4ms). It can be employed in the commercial TV to meet the challenging Energy star 6 regulation. Besides conventional LCD, we also extend the QD applications to liquid displays and smart lighting devices. The second part of this dissertation focuses on improving the LCD light efficiency. Conventional LCD system has fairly low light efficiency (4%~7%) since polarizers and color filters absorb 50% and 67% of the incoming light respectively. We propose two approaches to reduce the light loss within polarizers and color filters. The first method is a polarization preserving backlight system. It can be combined with linearly polarized light source to boost the LCD efficiency. Moreover, this polarization preserving backlight offers high polarization efficiency (~77.8%), 2.4× on-axis luminance enhancement, and no need for extra optics films. The second approach is a LCD backlight system with simultaneous color/polarization recycling. We design a novel polarizing color filter with high transmittance ( \u3e 90%), low absorption loss (~3.3%), high extinction ratio (\u3e10,000:1) and large angular tolerance (up to ±50˚). This polarizing color filter can be used in LCD system to introduce the color/polarization recycling and accordingly boost LCD efficiency by ~3 times. These two approaches open new gateway for ultra-low power LCDs. In the final session of this dissertation, we demonstrate a low power and color vivid reflective liquid crystal on silicon (LCOS) display with low viscosity liquid crystal mixture. Compared with commercial LC material, the new LC mixture offers ~4X faster response at 20oC and ~8X faster response at -20°C. This fast response LC material enables the field-sequential-color (FSC) driving for power saving. It also leads to several attractive advantages: submillisecond response time at room temperature, vivid color even at -20oC, high brightness, excellent ambient contrast ratio, and suppressed color breakup. With this material improvement, LCOS display can be promising for the emerging wearable display market

    Supervised stereo visual acuity tests implemented on 3D TV monitors

    No full text
    International audienceIn this paper we discuss under which conditions standard stereo visual acuity tests can be implemented on 3D TV monitors. In particular, we emphasize the role of environmental lighting conditions, on the measurement of the stereo visual acuity, when using conventional 3D tests, such as Wirt stereotests. We investigate the impact of parameters such as luminance, backlight and contrast when these tests are implemented on 3D TV monitors. We demonstrate that some deviations are observed when modifying the room luminance and the type of displays used (e.g. plasma (PDP) or liquid crystal (LCD) displays). Our measurements carried out on an human sample are supervised by pupil size measurements, using an eyes-tracker, enabling a better interpretation of the results. Finally, we discuss the benefit of using 3D tools to implement stereo visual acuity measurements

    Polarization fields: dynamic light field display using multi-layer LCDs

    Get PDF
    We introduce polarization field displays as an optically-efficient design for dynamic light field display using multi-layered LCDs. Such displays consist of a stacked set of liquid crystal panels with a single pair of crossed linear polarizers. Each layer is modeled as a spatially-controllable polarization rotator, as opposed to a conventional spatial light modulator that directly attenuates light. Color display is achieved using field sequential color illumination with monochromatic LCDs, mitigating severe attenuation and moiré occurring with layered color filter arrays. We demonstrate such displays can be controlled, at interactive refresh rates, by adopting the SART algorithm to tomographically solve for the optimal spatially-varying polarization state rotations applied by each layer. We validate our design by constructing a prototype using modified off-the-shelf panels. We demonstrate interactive display using a GPU-based SART implementation supporting both polarization-based and attenuation-based architectures. Experiments characterize the accuracy of our image formation model, verifying polarization field displays achieve increased brightness, higher resolution, and extended depth of field, as compared to existing automultiscopic display methods for dual-layer and multi-layer LCDs.National Science Foundation (U.S.) (Grant IIS-1116452)United States. Defense Advanced Research Projects Agency (Grant HR0011-10-C-0073)Alfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (Young Faculty Award

    Technical evolution of liquid crystal displays

    Get PDF
    Liquid crystal displays (LCDs) have evolved rapidly as a result of fierce competition among the various LCD technologies, and now occupy the largest proportion of the entire display market. The evolution of LCDs continues, with new technologies and new materials in development to replace current devices. This review summarizes the key technologies used in commercially successful LCD products, focusing on the requirements for high-end displays and the benefits of the in-plane switching and multi-domain vertical alignment modes. As in past advances, the development of new materials will play an important role in the continued technical evolution of LCDs.open252

    Polymeric polarisation optics : for energy efficient liquid crystal display illumination

    Get PDF
    • 

    corecore