317,742 research outputs found
Conditions for compatibility of quantum state assignments
Suppose N parties describe the state of a quantum system by N possibly
different density operators. These N state assignments represent the beliefs of
the parties about the system. We examine conditions for determining whether the
N state assignments are compatible. We distinguish two kinds of procedures for
assessing compatibility, the first based on the compatibility of the prior
beliefs on which the N state assignments are based and the second based on the
compatibility of predictive measurement probabilities they define. The first
procedure leads to a compatibility criterion proposed by Brun, Finkelstein, and
Mermin [BFM, Phys. Rev. A 65, 032315 (2002)]. The second procedure leads to a
hierarchy of measurement-based compatibility criteria which is fundamentally
different from the corresponding classical situation. Quantum mechanically none
of the measurement-based compatibility criteria is equivalent to the BFM
criterion.Comment: REVTEX 4, 19 pages, 1 postscript figur
An experimental test of loss aversion and scale compatibility
This paper studies two important reasons why people violate procedure invariance, loss aversion and scale compatibility. The paper extends previous research on loss aversion and scale compatibility by studying loss aversion and scale compatibility simultaneously, by looking at a new decision domain, medical decision analysis, and by examining the effect of loss aversion and scale compatibility on "well-contemplated preferences." We find significant evidence both of loss aversion and scale compatibility. However, the sizes of the biases due to loss aversion and scale compatibility vary over trade-offs and most participants do not behave consistently according to loss aversion or scale compatibility. In particular, the effect of loss aversion in medical trade-offs decreases with duration. These findings are encouraging for utility measurement and prescriptive decision analysis. There appear to exist decision contexts in which the effects of loss aversion and scale compatibility can be minimized and utilities can be measured that do not suffer from these distorting factors.Decision analysis, utility theory, loss aversion, scale compatibility, health
A liquid crystal based contact lens display using PEDOT: PSS and obliquely evaporated SiO2
An active spherically conformed liquid crystal cell is presented comprising PEDOT:PSS as a transparent conductive layer and obliquely evaporated SiO2 as an alignment layer. To tackle compatibility issues with the SU8 processing needed for the spacers, an additional buffer layer was included in the fabrication process. The electro-optic response is inspected closely and a contrast measurement is given
Incompatibility of unbiased qubit observables and Pauli channels
A quantum observable and a channel are considered compatible if they form
parts of the same measurement device, otherwise they are incompatible.
Constrains on compatibility between observables and channels can be quantified
via relations highlighting the necessary trade-offs between noise and
disturbance within quantum measurements. In this paper we shall discuss the
general properties of these compatibility relations, and then fully
characterize the compatibility conditions for an unbiased qubit observable and
a Pauli channel. The implications of the characterization are demonstrated on
some concrete examples.Comment: 10 pages, 6 figure
Advanced techniques for determining long term compatibility of materials with propellants
A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented
Quantitative agreement of Dzyaloshinskii-Moriya interactions for domain-wall motion and spin-wave propagation
The magnetic exchange interaction is the one of the key factors governing the
basic characteristics of magnetic systems. Unlike the symmetric nature of the
Heisenberg exchange interaction, the interfacial Dzyaloshinskii-Moriya
interaction (DMI) generates an antisymmetric exchange interaction which offers
challenging opportunities in spintronics with intriguing antisymmetric
phenomena. The role of the DMI, however, is still being debated, largely
because distinct strengths of DMI have been measured for different magnetic
objects, particularly chiral magnetic domain walls (DWs) and non-reciprocal
spin waves (SWs). In this paper, we show that, after careful data analysis,
both the DWs and SWs experience the same strength of DMI. This was confirmed by
spin-torque efficiency measurement for the DWs, and Brillouin light scattering
measurement for the SWs. This observation, therefore, indicates the unique role
of the DMI on the magnetic DW and SW dynamics and also guarantees the
compatibility of several DMI-measurement schemes recently proposed.Comment: 24 pages, 5 figure
- …
