673 research outputs found

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    Improved User Tracking in 5G Millimeter Wave Mobile Networks via Refinement Operations

    Full text link
    The millimeter wave (mmWave) frequencies offer the availability of huge bandwidths to provide unprecedented data rates to next-generation cellular mobile terminals. However, directional mmWave links are highly susceptible to rapid channel variations and suffer from severe isotropic pathloss. To face these impairments, this paper addresses the issue of tracking the channel quality of a moving user, an essential procedure for rate prediction, efficient handover and periodic monitoring and adaptation of the user's transmission configuration. The performance of an innovative tracking scheme, in which periodic refinements of the optimal steering direction are alternated to sparser refresh events, are analyzed in terms of both achievable data rate and energy consumption, and compared to those of a state-of-the-art approach. We aim at understanding in which circumstances the proposed scheme is a valid option to provide a robust and efficient mobility management solution. We show that our procedure is particularly well suited to highly variant and unstable mmWave environments.Comment: Accepted for publication to the 16th IEEE Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET), Jun. 201

    Initial Access in 5G mm-Wave Cellular Networks

    Full text link
    The massive amounts of bandwidth available at millimeter-wave frequencies (roughly above 10 GHz) have the potential to greatly increase the capacity of fifth generation cellular wireless systems. However, to overcome the high isotropic pathloss experienced at these frequencies, high directionality will be required at both the base station and the mobile user equipment to establish sufficient link budget in wide area networks. This reliance on directionality has important implications for control layer procedures. Initial access in particular can be significantly delayed due to the need for the base station and the user to find the proper alignment for directional transmission and reception. This paper provides a survey of several recently proposed techniques for this purpose. A coverage and delay analysis is performed to compare various techniques including exhaustive and iterative search, and Context Information based algorithms. We show that the best strategy depends on the target SNR regime, and provide guidelines to characterize the optimal choice as a function of the system parameters.Comment: 6 pages, 3 figures, 3 tables, 15 references, submitted to IEEE COMMAG 201
    • …
    corecore