41,248 research outputs found

    Detecting a Vector Based on Linear Measurements

    Full text link
    We consider a situation where the state of a system is represented by a real-valued vector. Under normal circumstances, the vector is zero, while an event manifests as non-zero entries in this vector, possibly few. Our interest is in the design of algorithms that can reliably detect events (i.e., test whether the vector is zero or not) with the least amount of information. We place ourselves in a situation, now common in the signal processing literature, where information about the vector comes in the form of noisy linear measurements. We derive information bounds in an active learning setup and exhibit some simple near-optimal algorithms. In particular, our results show that the task of detection within this setting is at once much easier, simpler and different than the tasks of estimation and support recovery

    Recovering Sparse Signals Using Sparse Measurement Matrices in Compressed DNA Microarrays

    Get PDF
    Microarrays (DNA, protein, etc.) are massively parallel affinity-based biosensors capable of detecting and quantifying a large number of different genomic particles simultaneously. Among them, DNA microarrays comprising tens of thousands of probe spots are currently being employed to test multitude of targets in a single experiment. In conventional microarrays, each spot contains a large number of copies of a single probe designed to capture a single target, and, hence, collects only a single data point. This is a wasteful use of the sensing resources in comparative DNA microarray experiments, where a test sample is measured relative to a reference sample. Typically, only a fraction of the total number of genes represented by the two samples is differentially expressed, and, thus, a vast number of probe spots may not provide any useful information. To this end, we propose an alternative design, the so-called compressed microarrays, wherein each spot contains copies of several different probes and the total number of spots is potentially much smaller than the number of targets being tested. Fewer spots directly translates to significantly lower costs due to cheaper array manufacturing, simpler image acquisition and processing, and smaller amount of genomic material needed for experiments. To recover signals from compressed microarray measurements, we leverage ideas from compressive sampling. For sparse measurement matrices, we propose an algorithm that has significantly lower computational complexity than the widely used linear-programming-based methods, and can also recover signals with less sparsity

    Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation

    Full text link
    Adaptive sampling results in dramatic improvements in the recovery of sparse signals in white Gaussian noise. A sequential adaptive sampling-and-refinement procedure called Distilled Sensing (DS) is proposed and analyzed. DS is a form of multi-stage experimental design and testing. Because of the adaptive nature of the data collection, DS can detect and localize far weaker signals than possible from non-adaptive measurements. In particular, reliable detection and localization (support estimation) using non-adaptive samples is possible only if the signal amplitudes grow logarithmically with the problem dimension. Here it is shown that using adaptive sampling, reliable detection is possible provided the amplitude exceeds a constant, and localization is possible when the amplitude exceeds any arbitrarily slowly growing function of the dimension.Comment: 23 pages, 2 figures. Revision includes minor clarifications, along with more illustrative experimental results (cf. Figure 2
    corecore