2 research outputs found

    DESIGN AND RELIABILITY ASSESSMENT OF HIGH POWER LED AND LED-BASED SOLID STATE LIGHTING

    Get PDF
    Lumen depreciation and color quality change of high power LED-based solid state light (SSL) are caused by the combination of various degradation mechanisms. The analytical/experimental models on the system as well as component-level are proposed to analyze the complex reliability issues of the LED-based solid SSL. On the system-level front, a systematic approach to define optimum design domains of LED-based SSL for a given light output requirement is developed first by taking cost, energy consumption and reliability into consideration. Three required data sets (lumen/LED, luminaire efficacy, and L70 lifetime) to define design domains are expressed as contour maps in terms of two most critical operating parameters: the forward current and the junction temperature (If and Tj). Then, the available domain of design solutions is defined as a common area that satisfies all the requirements of a luminaire. Secondly, a physic of failure (PoF) based hierarchical model is proposed to estimate the lifetime of the LED-based SSL. The model is implemented successfully for an LED-based SSL cooled by a synthetic jet, where the lifetime of a prototypical luminaire is predicted from LED lifetime data using the degradation analyses of the synthetic jet and the power electronics. On the component-level front, a mathematical model and an experimental procedure are developed to analyze the degradation mechanisms of high power LEDs. In the approach, the change in the spectral power distribution (SPD) caused by the LED degradation is decomposed into the contributions of individual degradation mechanisms so that the effect of each degradation mechanism on the final LED degradation is quantified. It is accomplished by precise deconvolution of the SPD into the leaked blue light and the phosphor converted light. The model is implemented using the SPDs of a warm white LED with conformally-coated phosphor, obtained before and after 9,000 hours of operation. The analysis quantifies the effect of each degradation mechanism on the final values of lumen, CCT and CRI

    COMPREHENSIVE ELECTRICAL/OPTICAL/THERMAL CHARACTERIZATIONS OF HIGH POWER LIGHT EMITTING DIODES AND LASER DIODES

    Get PDF
    Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift
    corecore