5 research outputs found

    State Estimation for the Individual and the Population in Mean Field Control with Application to Demand Dispatch

    Full text link
    This paper concerns state estimation problems in a mean field control setting. In a finite population model, the goal is to estimate the joint distribution of the population state and the state of a typical individual. The observation equations are a noisy measurement of the population. The general results are applied to demand dispatch for regulation of the power grid, based on randomized local control algorithms. In prior work by the authors it has been shown that local control can be carefully designed so that the aggregate of loads behaves as a controllable resource with accuracy matching or exceeding traditional sources of frequency regulation. The operational cost is nearly zero in many cases. The information exchange between grid and load is minimal, but it is assumed in the overall control architecture that the aggregate power consumption of loads is available to the grid operator. It is shown that the Kalman filter can be constructed to reduce these communication requirements,Comment: To appear, IEEE Trans. Auto. Control. Preliminary version appeared in the 54rd IEEE Conference on Decision and Control, 201

    Partially Observed Discrete-Time Risk-Sensitive Mean Field Games

    Full text link
    In this paper, we consider discrete-time partially observed mean-field games with the risk-sensitive optimality criterion. We introduce risk-sensitivity behaviour for each agent via an exponential utility function. In the game model, each agent is weakly coupled with the rest of the population through its individual cost and state dynamics via the empirical distribution of states. We establish the mean-field equilibrium in the infinite-population limit using the technique of converting the underlying original partially observed stochastic control problem to a fully observed one on the belief space and the dynamic programming principle. Then, we show that the mean-field equilibrium policy, when adopted by each agent, forms an approximate Nash equilibrium for games with sufficiently many agents. We first consider finite-horizon cost function, and then, discuss extension of the result to infinite-horizon cost in the next-to-last section of the paper.Comment: 29 pages. arXiv admin note: substantial text overlap with arXiv:1705.02036, arXiv:1808.0392
    corecore