46,117 research outputs found

    Measurement-device-independent quantum communication with an untrusted source

    Get PDF
    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security, as compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.Comment: 13 pages, 4 figures. arXiv admin note: the security proof technique is based on arXiv:0802.2725, arXiv:0905.4225

    Measurement-device-independent QKD with Modified Coherent State

    Full text link
    The measurement-device-independent quantum key distribution (MDI-QKD) protocol has been proposed for the purpose of removing the detector side channel attacks. Due to the multi-photon events of coherent states sources, real-life implementations of MDI-QKD protocol must employ decoy states to beat the photon-number-splitting attack. Decoy states for MDI-QKD based on the weak coherent states have been studied recently. In this paper, we propose to perform MDI-QKD protocol with modified coherent states (MCS) sources. We simulate the performance of MDI-QKD with the decoy states based on MCS sources. And our simulation indicates that both the secure-key rate and transmission distance can be improved evidently with MCS sources.The physics behind this improvement is that the probability of multi-photon events of the MCS is lower than that of weak coherent states while at the same time the probability of single-photon is higher
    • …
    corecore