826 research outputs found

    Partial Information Differential Games for Mean-Field SDEs

    Full text link
    This paper is concerned with non-zero sum differential games of mean-field stochastic differential equations with partial information and convex control domain. First, applying the classical convex variations, we obtain stochastic maximum principle for Nash equilibrium points. Subsequently, under additional assumptions, verification theorem for Nash equilibrium points is also derived. Finally, as an application, a linear quadratic example is discussed. The unique Nash equilibrium point is represented in a feedback form of not only the optimal filtering but also expected value of the system state, throughout the solutions of the Riccati equations.Comment: 7 page

    Necessary Condition for Near Optimal Control of Linear Forward-backward Stochastic Differential Equations

    Full text link
    This paper investigates the near optimal control for a kind of linear stochastic control systems governed by the forward backward stochastic differential equations, where both the drift and diffusion terms are allowed to depend on controls and the control domain is not assumed to be convex. In the previous work (Theorem 3.1) of the second and third authors [\textit{% Automatica} \textbf{46} (2010) 397-404], some problem of near optimal control with the control dependent diffusion is addressed and our current paper can be viewed as some direct response to it. The necessary condition of the near-optimality is established within the framework of optimality variational principle developed by Yong [\textit{SIAM J. Control Optim.} \textbf{48} (2010) 4119--4156] and obtained by the convergence technique to treat the optimal control of FBSDEs in unbounded control domains by Wu [% \textit{Automatica} \textbf{49} (2013) 1473--1480]. Some new estimates are given here to handle the near optimality. In addition, an illustrating example is discussed as well.Comment: To appear in International Journal of Contro

    A Probabilistic Approach to Mean Field Games with Major and Minor Players

    Full text link
    We propose a new approach to mean field games with major and minor players. Our formulation involves a two player game where the optimization of the representative minor player is standard while the major player faces an optimization over conditional McKean-Vlasov stochastic differential equations. The definition of this limiting game is justified by proving that its solution provides approximate Nash equilibriums for large finite player games. This proof depends upon the generalization of standard results on the propagation of chaos to conditional dynamics. Because it is on independent interest, we prove this generalization in full detail. Using a conditional form of the Pontryagin stochastic maximum principle (proven in the appendix), we reduce the solution of the mean field game to a forward-backward system of stochastic differential equations of the conditional McKean-Vlasov type, which we solve in the Linear Quadratic setting. We use this class of models to show that Nash equilibriums in our formulation can be different from those of the formulations contemplated so far in the literature
    corecore