1,453 research outputs found

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Edge Roman domination on graphs

    Full text link
    An edge Roman dominating function of a graph GG is a function f ⁣:E(G)β†’{0,1,2}f\colon E(G) \rightarrow \{0,1,2\} satisfying the condition that every edge ee with f(e)=0f(e)=0 is adjacent to some edge eβ€²e' with f(eβ€²)=2f(e')=2. The edge Roman domination number of GG, denoted by Ξ³Rβ€²(G)\gamma'_R(G), is the minimum weight w(f)=βˆ‘e∈E(G)f(e)w(f) = \sum_{e\in E(G)} f(e) of an edge Roman dominating function ff of GG. This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad stating that if GG is a graph of maximum degree Ξ”\Delta on nn vertices, then Ξ³Rβ€²(G)β‰€βŒˆΞ”Ξ”+1nβŒ‰\gamma_R'(G) \le \lceil \frac{\Delta}{\Delta+1} n \rceil. While the counterexamples having the edge Roman domination numbers 2Ξ”βˆ’22Ξ”βˆ’1n\frac{2\Delta-2}{2\Delta-1} n, we prove that 2Ξ”βˆ’22Ξ”βˆ’1n+22Ξ”βˆ’1\frac{2\Delta-2}{2\Delta-1} n + \frac{2}{2\Delta-1} is an upper bound for connected graphs. Furthermore, we provide an upper bound for the edge Roman domination number of kk-degenerate graphs, which generalizes results of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. We also prove a sharp upper bound for subcubic graphs. In addition, we prove that the edge Roman domination numbers of planar graphs on nn vertices is at most 67n\frac{6}{7}n, which confirms a conjecture of Akbari and Qajar. We also show an upper bound for graphs of girth at least five that is 2-cell embeddable in surfaces of small genus. Finally, we prove an upper bound for graphs that do not contain K2,3K_{2,3} as a subdivision, which generalizes a result of Akbari and Qajar on outerplanar graphs

    On the Roman Bondage Number of Graphs on surfaces

    Full text link
    A Roman dominating function on a graph GG is a labeling f:V(G)β†’{0,1,2}f : V(G) \rightarrow \{0, 1, 2\} such that every vertex with label 00 has a neighbor with label 22. The Roman domination number, Ξ³R(G)\gamma_R(G), of GG is the minimum of Ξ£v∈V(G)f(v)\Sigma_{v\in V (G)} f(v) over such functions. The Roman bondage number bR(G)b_R(G) is the cardinality of a smallest set of edges whose removal from GG results in a graph with Roman domination number not equal to Ξ³R(G)\gamma_R(G). In this paper we obtain upper bounds on bR(G)b_{R}(G) in terms of (a) the average degree and maximum degree, and (b) Euler characteristic, girth and maximum degree. We also show that the Roman bondage number of every graph which admits a 22-cell embedding on a surface with non negative Euler characteristic does not exceed 1515.Comment: 5 page

    The extremal genus embedding of graphs

    Full text link
    Let Wn be a wheel graph with n spokes. How does the genus change if adding a degree-3 vertex v, which is not in V (Wn), to the graph Wn? In this paper, through the joint-tree model we obtain that the genus of Wn+v equals 0 if the three neighbors of v are in the same face boundary of P(Wn); otherwise, {\deg}(Wn + v) = 1, where P(Wn) is the unique planar embedding of Wn. In addition, via the independent set, we provide a lower bound on the maximum genus of graphs, which may be better than both the result of D. Li & Y. Liu and the result of Z. Ouyang etc: in Europ. J. Combinatorics. Furthermore, we obtain a relation between the independence number and the maximum genus of graphs, and provide an algorithm to obtain the lower bound on the number of the distinct maximum genus embedding of the complete graph Km, which, in some sense, improves the result of Y. Caro and S. Stahl respectively
    • …
    corecore