56 research outputs found

    Maximum cardinality resonant sets and maximal alternating sets of hexagonal systems

    Get PDF
    AbstractIt is shown that the Clar number can be arbitrarily larger than the cardinality of a maximal alternating set. In particular, a maximal alternating set of a hexagonal system need not contain a maximum cardinality resonant set, thus disproving a previously stated conjecture. It is known that maximum cardinality resonant sets and maximal alternating sets are canonical, but the proofs of these two theorems are analogous and lengthy. A new conjecture is proposed and it is shown that the validity of the conjecture allows short proofs of the aforementioned two results. The conjecture holds for catacondensed hexagonal systems and for all normal hexagonal systems up to ten hexagons. Also, it is shown that the Fries number can be arbitrarily larger than the Clar number

    The maximum forcing number of polyomino

    Full text link
    The forcing number of a perfect matching MM of a graph GG is the cardinality of the smallest subset of MM that is contained in no other perfect matchings of GG. For a planar embedding of a 2-connected bipartite planar graph GG which has a perfect matching, the concept of Clar number of hexagonal system had been extended by Abeledo and Atkinson as follows: a spanning subgraph CC of is called a Clar cover of GG if each of its components is either an even face or an edge, the maximum number of even faces in Clar covers of GG is called Clar number of GG, and the Clar cover with the maximum number of even faces is called the maximum Clar cover. It was proved that if GG is a hexagonal system with a perfect matching MM and KK' is a set of hexagons in a maximum Clar cover of GG, then GKG-K' has a unique 1-factor. Using this result, Xu {\it et. at.} proved that the maximum forcing number of the elementary hexagonal system are equal to their Clar numbers, and then the maximum forcing number of the elementary hexagonal system can be computed in polynomial time. In this paper, we show that an elementary polyomino has a unique perfect matching when removing the set of tetragons from its maximum Clar cover. Thus the maximum forcing number of elementary polyomino equals to its Clar number and can be computed in polynomial time. Also, we have extended our result to the non-elementary polyomino and hexagonal system

    Resonance graphs of plane bipartite graphs as daisy cubes

    Full text link
    We characterize all plane bipartite graphs whose resonance graphs are daisy cubes and therefore generalize related results on resonance graphs of benzenoid graphs, catacondensed even ring systems, as well as 2-connected outerplane bipartite graphs. Firstly, we prove that if GG is a plane elementary bipartite graph other than K2K_2, then the resonance graph R(G)R(G) is a daisy cube if and only if the Fries number of GG equals the number of finite faces of GG, which in turn is equivalent to GG being homeomorphically peripheral color alternating. Next, we extend the above characterization from plane elementary bipartite graphs to all plane bipartite graphs and show that the resonance graph of a plane bipartite graph GG is a daisy cube if and only if GG is weakly elementary bipartite and every elementary component of GG other than K2K_2 is homeomorphically peripheral color alternating. Along the way, we prove that a Cartesian product graph is a daisy cube if and only if all of its nontrivial factors are daisy cubes

    Sink-Stable Sets of Digraphs

    Full text link
    We introduce the notion of sink-stable sets of a digraph and prove a min-max formula for the maximum cardinality of the union of k sink-stable sets. The results imply a recent min-max theorem of Abeledo and Atkinson on the Clar number of bipartite plane graphs and a sharpening of Minty's coloring theorem. We also exhibit a link to min-max results of Bessy and Thomasse and of Sebo on cyclic stable sets

    Sink-Stable Sets of Digraphs

    Get PDF
    We introduce the notion of sink-stable sets of a digraph and prove a min-max formula for the maximum cardinality of the union of k sink-stable sets. The results imply a recent min-max theorem of Abeledo and Atkinson on the Clar number of bipartite plane graphs and a sharpening of Minty’s coloring theorem. We also exhibit a link to min-max results of Bessy and Thomasse ́ and of Sebő on cyclic stable sets
    corecore