2 research outputs found

    Maximum Weighted Sum Rate of Multi-Antenna Broadcast Channels

    Full text link
    Recently, researchers showed that dirty paper coding (DPC) is the optimal transmission strategy for multiple-input multiple-output broadcast channels (MIMO-BC). In this paper, we study how to determine the maximum weighted sum of DPC rates through solving the maximum weighted sum rate problem of the dual MIMO multiple access channel (MIMO-MAC) with a sum power constraint. We first simplify the maximum weighted sum rate problem such that enumerating all possible decoding orders in the dual MIMO-MAC is unnecessary. We then design an efficient algorithm based on conjugate gradient projection (CGP) to solve the maximum weighted sum rate problem. Our proposed CGP method utilizes the powerful concept of Hessian conjugacy. We also develop a rigorous algorithm to solve the projection problem. We show that CGP enjoys provable convergence, nice scalability, and great efficiency for large MIMO-BC systems

    Maximum weighted sum rate of multi-antenna broadcast channels,” 2007

    No full text
    Abstract β€” Recently, researchers showed that dirty paper coding (DPC) is the optimal transmission strategy for multiple-input multiple-output broadcast channels (MIMO-BC). In this paper, we study how to determine the maximum weighted sum of DPC rates through solving the maximum weighted sum rate problem of the dual MIMO multiple access channel (MIMO-MAC) with a sum power constraint. We first simplify the maximum weighted sum rate problem such that enumerating all possible decoding orders in the dual MIMO-MAC is unnecessary. We then design an efficient algorithm based on conjugate gradient projection (CGP) to solve the maximum weighted sum rate problem. Our proposed CGP method utilizes the powerful concept of Hessian conjugacy. We also develop a rigorous algorithm to solve the projection problem. We show that CGP enjoys provable convergence, nice scalability, and great efficiency for large MIMO-BC systems. I
    corecore