127,691 research outputs found

    Estimation of individual causal effects in network setup for multiple treatments

    Full text link
    We study the problem of estimation of Individual Treatment Effects (ITE) in the context of multiple treatments and networked observational data. Leveraging the network information, we aim to utilize hidden confounders that may not be directly accessible in the observed data, thereby enhancing the practical applicability of the strong ignorability assumption. To achieve this, we first employ Graph Convolutional Networks (GCN) to learn a shared representation of the confounders. Then, our approach utilizes separate neural networks to infer potential outcomes for each treatment. We design a loss function as a weighted combination of two components: representation loss and Mean Squared Error (MSE) loss on the factual outcomes. To measure the representation loss, we extend existing metrics such as Wasserstein and Maximum Mean Discrepancy (MMD) from the binary treatment setting to the multiple treatments scenario. To validate the effectiveness of our proposed methodology, we conduct a series of experiments on the benchmark datasets such as BlogCatalog and Flickr. The experimental results consistently demonstrate the superior performance of our models when compared to baseline methods.Comment: 7 pages, accepted at AAAI-GCLR 202

    Domain Adaptation: Learning Bounds and Algorithms

    Full text link
    This paper addresses the general problem of domain adaptation which arises in a variety of applications where the distribution of the labeled sample available somewhat differs from that of the test data. Building on previous work by Ben-David et al. (2007), we introduce a novel distance between distributions, discrepancy distance, that is tailored to adaptation problems with arbitrary loss functions. We give Rademacher complexity bounds for estimating the discrepancy distance from finite samples for different loss functions. Using this distance, we derive novel generalization bounds for domain adaptation for a wide family of loss functions. We also present a series of novel adaptation bounds for large classes of regularization-based algorithms, including support vector machines and kernel ridge regression based on the empirical discrepancy. This motivates our analysis of the problem of minimizing the empirical discrepancy for various loss functions for which we also give novel algorithms. We report the results of preliminary experiments that demonstrate the benefits of our discrepancy minimization algorithms for domain adaptation.Comment: 12 pages, 4 figure

    Kernel-Elastic Autoencoder for Molecular Design

    Full text link
    We introduce the Kernel-Elastic Autoencoder (KAE), a self-supervised generative model based on the transformer architecture with enhanced performance for molecular design. KAE is formulated based on two novel loss functions: modified maximum mean discrepancy and weighted reconstruction. KAE addresses the long-standing challenge of achieving valid generation and accurate reconstruction at the same time. KAE achieves remarkable diversity in molecule generation while maintaining near-perfect reconstructions on the independent testing dataset, surpassing previous molecule-generating models. KAE enables conditional generation and allows for decoding based on beam search resulting in state-of-the-art performance in constrained optimizations. Furthermore, KAE can generate molecules conditional to favorable binding affinities in docking applications as confirmed by AutoDock Vina and Glide scores, outperforming all existing candidates from the training dataset. Beyond molecular design, we anticipate KAE could be applied to solve problems by generation in a wide range of applications
    • …
    corecore