3 research outputs found

    Maximum Margin Clustering for State Decomposition of Metastable Systems

    Full text link
    When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that the large margin technique can be utilized to search for the optimal decomposition without phase space discretization. Moreover, several simulation examples are given to illustrate the effectiveness of the proposed method

    Implications of PCCA+ in Molecular Simulation

    Get PDF
    Upon ligand binding or during chemical reactions the state of a molecular system changes in time. Usually we consider a finite set of (macro-) states of the system (e.g., ’bound’ vs. ’unbound’), although the process itself takes place in a continuous space. In this context, the formula χ=XA connects the micro-dynamics of the molecular system to its macro-dynamics. χ can be understood as a clustering of micro-states of a molecular system into a few macro-states. X is a basis of an invariant subspace of a transfer operator describing the micro-dynamics of the system. The formula claims that there is an unknown linear relation A between these two objects. With the aid of this formula we can understand rebinding effects, the electron flux in pericyclic reactions, and systematic changes of binding rates in kinetic ITC experiments. We can also analyze sequential spectroscopy experiments and rare event systems more easily. This article provides an explanation of the formula and an overview of some of its consequences
    corecore