13,334 research outputs found

    Neural Likelihoods via Cumulative Distribution Functions

    Get PDF
    We leverage neural networks as universal approximators of monotonic functions to build a parameterization of conditional cumulative distribution functions (CDFs). By the application of automatic differentiation with respect to response variables and then to parameters of this CDF representation, we are able to build black box CDF and density estimators. A suite of families is introduced as alternative constructions for the multivariate case. At one extreme, the simplest construction is a competitive density estimator against state-of-the-art deep learning methods, although it does not provide an easily computable representation of multivariate CDFs. At the other extreme, we have a flexible construction from which multivariate CDF evaluations and marginalizations can be obtained by a simple forward pass in a deep neural net, but where the computation of the likelihood scales exponentially with dimensionality. Alternatives in between the extremes are discussed. We evaluate the different representations empirically on a variety of tasks involving tail area probabilities, tail dependence and (partial) density estimation.Comment: 10 page

    Lightweight Probabilistic Deep Networks

    Full text link
    Even though probabilistic treatments of neural networks have a long history, they have not found widespread use in practice. Sampling approaches are often too slow already for simple networks. The size of the inputs and the depth of typical CNN architectures in computer vision only compound this problem. Uncertainty in neural networks has thus been largely ignored in practice, despite the fact that it may provide important information about the reliability of predictions and the inner workings of the network. In this paper, we introduce two lightweight approaches to making supervised learning with probabilistic deep networks practical: First, we suggest probabilistic output layers for classification and regression that require only minimal changes to existing networks. Second, we employ assumed density filtering and show that activation uncertainties can be propagated in a practical fashion through the entire network, again with minor changes. Both probabilistic networks retain the predictive power of the deterministic counterpart, but yield uncertainties that correlate well with the empirical error induced by their predictions. Moreover, the robustness to adversarial examples is significantly increased.Comment: To appear at CVPR 201
    • …
    corecore