25,514 research outputs found

    A Comparison of Different Machine Transliteration Models

    Full text link
    Machine transliteration is a method for automatically converting words in one language into phonetically equivalent ones in another language. Machine transliteration plays an important role in natural language applications such as information retrieval and machine translation, especially for handling proper nouns and technical terms. Four machine transliteration models -- grapheme-based transliteration model, phoneme-based transliteration model, hybrid transliteration model, and correspondence-based transliteration model -- have been proposed by several researchers. To date, however, there has been little research on a framework in which multiple transliteration models can operate simultaneously. Furthermore, there has been no comparison of the four models within the same framework and using the same data. We addressed these problems by 1) modeling the four models within the same framework, 2) comparing them under the same conditions, and 3) developing a way to improve machine transliteration through this comparison. Our comparison showed that the hybrid and correspondence-based models were the most effective and that the four models can be used in a complementary manner to improve machine transliteration performance

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Reduced perplexity: Uncertainty measures without entropy

    Full text link
    Conference paper presented at Recent Advances in Info-Metrics, Washington, DC, 2014. Under review for a book chapter in "Recent innovations in info-metrics: a cross-disciplinary perspective on information and information processing" by Oxford University Press.A simple, intuitive approach to the assessment of probabilistic inferences is introduced. The Shannon information metrics are translated to the probability domain. The translation shows that the negative logarithmic score and the geometric mean are equivalent measures of the accuracy of a probabilistic inference. Thus there is both a quantitative reduction in perplexity as good inference algorithms reduce the uncertainty and a qualitative reduction due to the increased clarity between the original set of inferences and their average, the geometric mean. Further insight is provided by showing that the Renyi and Tsallis entropy functions translated to the probability domain are both the weighted generalized mean of the distribution. The generalized mean of probabilistic inferences forms a Risk Profile of the performance. The arithmetic mean is used to measure the decisiveness, while the -2/3 mean is used to measure the robustness

    Improving the quality of Gujarati-Hindi Machine Translation through part-of-speech tagging and stemmer-assisted transliteration

    Get PDF
    Machine Translation for Indian languages is an emerging research area. Transliteration is one such module that we design while designing a translation system. Transliteration means mapping of source language text into the target language. Simple mapping decreases the efficiency of overall translation system. We propose the use of stemming and part-of-speech tagging for transliteration. The effectiveness of translation can be improved if we use part-of-speech tagging and stemming assisted transliteration.We have shown that much of the content in Gujarati gets transliterated while being processed for translation to Hindi language
    corecore