11 research outputs found

    Maximum Distance Separable Codes for Symbol-Pair Read Channels

    Full text link
    We study (symbol-pair) codes for symbol-pair read channels introduced recently by Cassuto and Blaum (2010). A Singleton-type bound on symbol-pair codes is established and infinite families of optimal symbol-pair codes are constructed. These codes are maximum distance separable (MDS) in the sense that they meet the Singleton-type bound. In contrast to classical codes, where all known q-ary MDS codes have length O(q), we show that q-ary MDS symbol-pair codes can have length \Omega(q^2). In addition, we completely determine the existence of MDS symbol-pair codes for certain parameters

    Two classes of reducible cyclic codes with large minimum symbol-pair distances

    Full text link
    The high-density data storage technology aims to design high-capacity storage at a relatively low cost. In order to achieve this goal, symbol-pair codes were proposed by Cassuto and Blaum \cite{CB10,CB11} to handle channels that output pairs of overlapping symbols. Such a channel is called symbol-pair read channel, which introduce new concept called symbol-pair weight and minimum symbol-pair distance. In this paper, we consider the parameters of two classes of reducible cyclic codes under the symbol-pair metric. Based on the theory of cyclotomic numbers and Gaussian period over finite fields, we show the possible symbol-pair weights of these codes. Their minimum symbol-pair distances are twice the minimum Hamming distances under some conditions. Moreover, we obtain some three symbol-pair weight codes and determine their symbol-pair weight distribution. A class of MDS symbol-pair codes is also established. Among other results, we determine the values of some generalized cyclotomic numbers

    Maximum Distance Separable Codes for Symbol-Pair Read Channels

    No full text
    corecore